Showing posts with label climate change. Show all posts
Showing posts with label climate change. Show all posts

Food's Footprint

Meat Society: Number 5 in a series exploring issues related to curbing demand for animal products, an important climate change solution for individuals and nations alike, especially in Western states where meat and diary consumption dwarfs other regions.

Excerpt from Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages ISBN: 0692641157)http://amzn.to/2yn7XrC


Animal agriculture has an enormous greenhouse gas (GHG) footprint, and is the second main source of climate-altering gases. In the EU, for instance, 29 percent of all consumption-derived GHG emissions are food related. This almost 1/3 figure does not include discharges from goods produced within the EU and exported.(50)

There is overwhelming evidence that animal-based diets cause greater planetary heating than plant-based foods, but there are differences in GHG production. The environmental costs per calorie of dairy, chickens, pigs, and eggs are strikingly lower than the impacts of cows - the production of which requires 28, 11, 5, and 6 times the sum of land, irrigation water, GHG, and nitrogen, respectively, than the other livestock categories. On top of that, plant foods use two to six-fold lower land, GHG, and nitrogen than even those of the non-cow animal-derived calories.(51)

Greater trade liberalization, like NAFTA and the Trans-Pacific Partnership (TPP), will lead to higher economic benefits for some, and come at the expense of the poor, the environment and the climate if no other regulations and safeguards are put in place. In addition, mounting demand for agricultural goods will intensify the pressure on global water resources over the coming decades.(52)

Deforestation, mainly in Latin America, leads to remarkable amounts of additional carbon pollution due to trade liberalization. In the future, non-CO2 outflows will mostly shift to China due to comparative advantages in livestock production and rising demand for animal products in the region.(53)

Eliminating all CO2 pollution from the energy and transportation sectors is not enough to stop global warming. The Intergovernmental Panel on Climate Change (IPCC) estimates that agriculture, land use, land-use modification, and forestry total around 23 percent of total manmade GHGs. This means that powerful GHGs from food and agriculture - mainly nitrous oxide (N2O) from agricultural soils, and methane (CH4) from livestock - will continue to cause planetary heating.(54) 

Excessive nutrient flows cause eutrophication, worsens biodiversity loss, and exacerbates transformation of the climate. Eutrophication is the ecosystem's response to the addition of inorganic plant nutrients, especially phosphates and nitrates, through detergents, fertilizers, or sewage. One example, is the "bloom", or great increase, of phytoplankton in a water body. Negative environmental effects include hypoxia, the depletion of oxygen in the water, which may cause death to aquatic animals. 

Nitrous oxide is the third biggest contributor to manmade climate warming, and although there is far less in the atmosphere than carbon dioxide, it is a salient greenhouse gas for three reasons. First, it is very efficient at absorbing energy; second, it stays in the atmosphere for a long time; and third, it is the most significant ozone-depleting substance in the atmosphere. Once emitted, nitrous oxide stays in the atmosphere for about 120 years. Nitrous oxide (N2O) lasts a long time, and for over 100 years, each molecule has a warming impact almost 300 times that of carbon dioxide (CO2), and around 9 times greater than methane (CH4). And, N2O outflows could double by 2050.(55)

A 2013 Worldwatch Institute report estimated that global greenhouse gas pollution from the agricultural sector totaled 4.7 billion tons of carbon dioxide equivalent (CO₂e) in 2010, up 13 percent over 1990.(56) A 2006 report from the UN's Food and Agriculture Organization (FAO) showed that the global livestock sector is growing faster than any other agricultural sub-sector.

The world’s livestock population is expected to increase 76 percent by 2050, with a 65 percent surge in demand for cow's milk. And, remarkably, 80 percent of growth in the sector comes from industrial production systems. Currently, mirroring their fossil fuel releases, the world’s largest food animal consumers are China, EU, US and Brazil.(57)

The FAO's 2013 follow-up livestock report reiterated that livestock is the fastest growing agricultural sub-sector. The food agency's newer assessment was limited to direct farm discharges, but it still estimated that the animal food industry produce 14.5 percent of total anthropogenic climate-altering gases, which is in excess of all forms of transportation.(58)

The FAO figure still places the animal food industry at second place, after energy production, in terms of global manmade GHG pollution. A 2010 UNEP report likewise showed that animal products caused greater damage than producing construction minerals, such as sand or cement, plastics or metals.

In 2009, one of the World Bank's most distinguished environmental assessment experts, Dr. Robert Goodland, wrote a thought-provoking research paper estimating that the lifecycle and supply chain of animal-based meats, egg products, and dairy products accounted for at least 51 percent of manmade global GHGs.(59) One of the main reasons for the difference between the FAO and Goodland's GHG figures is that the FAO's 15 percent estimate is a partial assessment that only takes into account GHG discharges from the farming part of animal-based agriculture.

In fact, all of the lower 11 to 18 percent GHG estimates do not represent a full life-cycle GHG analysis of the animal food industry. These lower assessments end at the farm-gate and, therefore, exclude downstream GHGs from transportation, food processing, packaging, and sale of food animal products. Goodland's 51 percent estimate encompass these post-farm emissions, which are critical to assessing the total contributions of the animal food industry to global warming.

While the pathways between anthropogenic climate-altering gases and planetary heating are complex, and emissions are not equivalent to warming, there is still a strong correlation between livestock GHG releases and planetary heating. After energy production, animal-based agribusiness is the second, and possibly the main source of manmade climate warming pollution. The evidence for this is presented in Parts II and III of the book, Meat Climate Change.

In contrast, if we limit human activity and livestock production in the tropical forests of the world, this could play a valuable role in helping to curb the rise in carbon dioxide, methane, and nitrous oxide in the atmosphere. Preventing further losses of carbon from our tropical forests must remain a high priority.

From Chapter 2: MEAT THE FUTURE, pages 16-17

Global Carnism

(Meat Atlast 2014)

Meat Society: Number 3 in a series exploring issues related to curbing demand for animal products, an important climate change solution for individuals and nations alike, especially in Western states where meat and diary consumption dwarfs other regions.

Excerpt from Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages ISBN: 0692641157 http://amzn.to/2yn7XrC

Intake of food animals is high in the global North, but the global South is catching up and this confluence spells disaster. While the international food trade complicates using national figures, a country-specific analysis of carnism is still instructive. China is the biggest consumer of both animal carcass and cow's milk products, with the US, the EU, and Brazil in the top five.(529)

In 2011, Americans ate 38 million tonnes (mt) (83 billion lb) of pig, chicken, cow, sheep, and goat carcass, and 40 mt (88 billion lb) of cow's milk and eggs. In the same year, Brazilians ingested 19 mt (41 billion lb) of carcass and 30 mt (66 billion lb) of cow's milk and eggs. Meanwhile, Russians consumed 10 mt (22 billion lb) of animal flesh and 20 mt (44 billion lb) of cow's milk and eggs.

In 2011, Mexicans ingested 8 mt (17.6 billion lb) pig, chicken, cow, sheep, and goat carcass, and 10 mt (22 billion lb) of cow's milk and eggs in 2011. As well, Indians ate 5 mt (11 billion lb) of flesh and 64 mt (141 billion lb) of cow's milk and eggs. While, the Japanese had 6 mt (13 billion lb) of carcass and 8 mt (17 billion lb) of cow's milk and eggs, the Vietnamese ate 5mt (11 billion lb) of animal flesh, and Argentines consumed 4 mt (8.8 billion lb). In addition, people in Europe (EU27) consumed 40 mt (88 billion lb) of carcass and 43 mt (94 billion lb) of cow's milk and eggs. 

Per capita, carcass consumption in China has multiplied six-fold over the past 40 years, from an average of 20 kg (44 pounds) per capita in 1980, to 52 kg (114 pounds) in 2007. In 2011, the Chinese consumed 75 mt (165 billion lb) of pig, chicken, cow, sheep, and goat carcass, and 64 mt (141 billion lb) of cow's milk and eggs. Pig carcass has been the main component of total flesh consumption, and constituted 54% of total animal flesh intake, 80% of red carcass intake, and 99% of fatty red meat intake in 2011.(530)

In 2011, the proportion of Chinese adults who consumed red meat surged from 65% in 1991 to 86%, while chicken consumption soared up from 7 to 21%, and seafood from 27 to 38%. In 2011, the average intake of red meat was 86 g (3 oz) a day; for chicken it was 71 g (2.5 oz) day; and seafood was 70g (2.5 oz) a day. In India, animal consumption has grown by 40% in the last 15 years, though it is still 40 times less than average consumption in the UK.(531)

Every week, the average person in the UK eats 1.6 kg (3.5 lbs) of animal carcass and 4.2 liters (1.1 gal) of cow's milk. This is equivalent to 6 pig sausages, or 450g (16 oz); 2 chicken breasts, or 350g (12 oz); 4 ham sandwiches from pig, or 100g (3.5 oz); 8 slices of bacon from pig, or 250g (9 oz); 3 burgers from cow, or 450g (16 oz); 3 liters (0.8 gal) of cow's milk; 100g (3.5 oz) of cheese; and a portion of cream.(532) For the entire year of 2011, each UK resident ate an average of 82 kilograms (180.7 pounds) of carcass, equivalent to 1,400 pig sausages, or nearly 4 a day. What’s more, chicken consumption in the UK has doubled from 1987 to 2007.(533)

The average UK carnist eats in excess of 11,000 animals in their lifetime - 1 goose, 1 rabbit, 4 cattle, 18 pigs, 23 sheep and lambs, 28 ducks, 39 turkeys, 1,158 chickens, 3,593 shellfish and 6,182 fish. The diet of each British carnivore requires a vast quantity of land, fuel and water to raise and process the animals that reach their plate.(534)

By way of illustration, the soybean equivalent required to produce a UK citizen’s average annual intake of animal flesh and cow's milk products is 54.4 kg (120 lbs). This total equates to 22.2 kg (49 lbs) of soy for chicken, and 12.5 kg (27.5 lbs) for pig flesh. In addition, 6.7 kg (14.7 lbs) of soy are required for chicken eggs, another 3.8 kg (8.3) for cow carcass and veal, and 1.9 kg (4.1 lbs) for milk. On top of this, 1.7 kg (3.7 lbs) of soy are needed for cheese, and 5.6 kg (12.3 lbs) for other products.(535)

One large-scale survey in the UK looked at the average greenhouse gas (GHG) discharges associated with a standard 2,000 kcal diet in kilograms of carbon dioxide equivalents per day (kgCO2e/day). It was 7.19 for high meat-eaters (defined as in excess of 100 g or 3.5 oz per day), 5.63 for medium meat-eaters, 4.67 for low meat-eaters, 3.9 for fish-eaters, 3.81 for vegetarians and 2.89 for vegans. Dietary GHG outflows in meat-eaters were twice as high as those in vegans.(536)

Chapter 14, DIET OR POPULATION? pages 139-140


Trends in Animal Production

(Meat Atlast 2014)

Meat Society: Number 2 in a series exploring issues related to curbing demand for animal products, an important climate change solution for individuals and nations alike, especially in Western states where meat and diary consumption dwarfs other regions.

Excerpt from Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages ISBN: 0692641157 http://amzn.to/2yn7XrC

Agriculture generates over a quarter of the world's greenhouse pollution, overwhelmingly from livestock production. There are billions of farm animals worldwide, far surpassing human populations. In 2013, the cattle population reached 1.4 billion animals, up 54% from 1963. The number of chickens ballooned from 4.1 billion to 21.7 billion between 1963 and 2013. During the same period, the pig population soared upwards 114% to reach 977 million.(520)

Animal numbers will proliferate along with greenhouse gases (GHGs). Pork and poultry will grow at faster rates than cows. According to one study, there will be "a net increases in GHGs from the agricultural and livestock sectors but a diminishing trend in the emissions intensities across commodities (GHGs per unit of product)."(521)

'Red meat' refers to cow, pig, sheep, and goat carcass, and their flesh contained in processed foods. 'Processed meat' refers to nonhuman animal flesh preserved by smoking, curing or salting, or addition of chemical preservatives, and flesh contained in processed foods. Both are set to expand sharply by 2050. Global animal carcass production has quadrupled from 78 million tonnes (mt) (171 billion lb) in 1963, to 308 mt (678 billion lb) in 2012. For 2014, the Food and Agricultural Organization (FAO) forecasts a further expansion to 311.6 mt (686.9 billion lb). Annually, the world produces 124 mt (273 billion lb) of chicken and 59 mt (130 billion lb) of cow carcass.(522)

In 2014, according to Eurostat data, Germany, Spain, France, and UK had the highest number of livestock. The largest number of pigs was in Germany and Spain (28.3 and 26.6 million heads respectively), the most cows in France (19.3 million heads) and sheep (23.0 million heads) in the UK.

Animal intake will rise 75% by 2050, and cow's milk by 65%, compared with 40% for cereals. By 2020, Chinese will consume an extra 20 million tonnes (mt) or 44 billion pounds of animal carcass and cow's milk a year.(523) From 1997 to 1999, global average consumption of animal carcass and cow's milk products was 36 kg (79.3 lb) per year. The average was 88 kg (194 lb) per year in industrialized countries and in South Asia, it was 5 kg (11 lb) per person per year.(524)

By 2012, on average, every person on Earth consumed 42.9 kg (94.4 lb) of animal flesh alone. In industrialized countries, average animal carcass consumption reached 76.2 kg (168 lb) per year. And in developing countries, the annual average animal flesh consumption was 33.4 kg (73.6 lb). People living in developed countries such as Australia eat roughly their own weight in animal carcass every year, consuming in excess of 80 kg (176 lb) each, or about 224 grams (8 oz) a day. That is the equivalent of almost two quarter-pound burgers every day. In Asia, the animal sector is expected to see an 80% growth by 2022.(525) 

And climate-altering gases from food production will go up 80% if animal flesh and cow's milk consumption continue to climb at its current rate.(526) From 1970 to 2000, chicken egg consumption has doubled worldwide, with a bigger increase in developing countries compared to industrial countries. During this same period, there was little variation in butter and cheese intake at the global level.(527)

Global animal carcass production is projected to double from 229 mt (504.8 billion lb) in 1999/2001, to 465 mt (1.024 trillion lb) in 2050. Almost half the additional carcass consumed will come from chicken carcass by 2022. Cow's milk output is projected to swell from 580 mt (1.278 trillion lb) to 1,043 mt (2.298 trillion lb) in the same period. The daily average in developing countries is 47 grams (1.6 oz). Based on this huge difference in consumption, one team of medical experts argue that "for the world's higher-income populations, greenhouse-gas emissions from meat eating warrants the same scrutiny as do those from driving and flying."(528)

Chapter 14, DIET OR POPULATION? pg. 139-140

Meat Society

Meat Society is a series exploring issues related to curbing demand for animal products, an important climate change solution for individuals and nations alike, especially in Western states where meat and diary consumption dwarfs other regions.

The articles are excerpts from  Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages ISBN: 0692641157 http://amzn.to/2yn7XrC

See also Pandemics Ahead, a series of articles from Meat Climate Change, that looks at the link between animal protein and global health disasters. See also our COVID-19 Meat Pandemic Bibliography with a categorized listing of Online News and Reports (March to June, 2020).

1. Dietary Transformation

2. Trends in Animal Production

3. Global Carnism

4. US Animal Production

5. Food's Footprint

6. Food Animals' GHGs 

7. Addressing Livestock GHGs

8. Animal Agribusiness Disorder

9. Factory Farming is Not a Solution

10. Structural Demand for Animal Flesh

11. Mitigating Demand for Animal Protein

12. GHGs: A Tale of Two Sources

13. Livestock's Emissions Denial?

14. Sounding the Alarm on Carnism

15. Urbanization and Carnism

16. Over-Consumption and GHGs

17. Global Substitution Diets

18. Class and Global Diet

19. Over-Consumption Curse

20. Diet or Over Population?

21. Hungry Masses

22. Hidden Population: Obesity

23. Livestock Triangle

24. Livestock Equals Food Insecurity

25. Meat and Colonialism

26. Climate Justice

27. Racism and Food Deserts

28. Meat the Patriarchy

29. Greenwashing Cruelty: Humane Meat

30. Diet and Social Justice

For more information, see MeatClimateChange.org

Dietary Transformation

Meat Society: Number 1 in a series exploring issues related to curbing demand for animal products, an important climate change solution for individuals and nations alike, especially in Western states where meat and diary consumption dwarfs other regions.

Excerpt from Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages ISBN: 0692641157 http://amzn.to/2yn7XrC

It took 50,000 years to reach a population of one billion in 1830. But by 2000, the world's population was six billion, and it passed seven billion in 2012. The extraordinary multiplication of humans has been accompanied by a similar addition in the population of domesticated food animals. With the projected increase in both groups, over the next 50 years, Earth will need to produce as much food to feed humans as it took to feed the species for the last 10,000 years. 

Animal science often categorize nonhuman animals as wildlife, domestic food animals, zoo animals, and pet animals. The food animal sector has experienced phenomenal development in the last decade, fueled mainly by the global expansion of carnism, population increase, urbanization and income growth often referred to as the 'livestock revolution.'(39)

In 1995, for the first time, the volume of animal carcass produced in developing countries exceeded that of developed countries, and since then the gap in cow's milk output between the two has been narrowing.(40) The livestock revolution has negative implications for global health, livelihoods and environment. Traditional diets are being replaced by diets higher in refined sugars, refined fats, oils and animal products. This conversion escalates the flow of nutrients into the environment, which is linked to global warming and the loss of biodiversity. 

These three human-induced shifts have led to overstepping the ‘planetary boundaries’(41) or ‘the upper tolerable limits’ of the regulatory capacity of the earth system.(42) The planetary boundaries represent critical thresholds for shifts in the major earth system processes beyond which non-linear, abrupt environmental modifications may occur on a continental or planetary scale. The Western animal-based diet is a major contributor due to its effects on planetary heating, biodiversity loss, water and land degradation.

Owing to the extraordinary shifts in consumption habits, livestock production is in direct competition with humans for scarce land, water, and other natural resources. Astonishingly, despite its wide-ranging social and environmental impacts, the livestock sector is not a major force in the global economy, generating under 1.5% of total GDP.

Much of the grain grown in developed nations goes to feed not human beings, but domesticated animals. Livestock requires a lot of grain and the grain is used very inefficiently. By way of illustration, one filet mignon requires 32 lbs. of corn and the animal converts that grain into calories at just 3% efficiency.(43)

Livestock production takes up an enormous size of land: 6.2 million sq. mi (16 million sq. km) are currently used to grow crops — an amount of land about equal to the size of South America — while 11.6 million sq. mi (30 million sq. km) has been set aside for pastureland, an area equal to the entire African continent. Altogether that is greater than 40% of the dry land on the planet. While 56 million acres of US land are producing hay for livestock, only 4 million acres are producing vegetables for human consumption.(44) Humans use 60 times the size of land to grow and raise food than is used to live on. 

Farming takes half the world's available freshwater, much of which is used for irrigation. Farm animals consume one-third of global cereal production, 90% of soy meal and 30% of the fish caught. Upwards of half the world's crops are used to feed animals. In the US, over 33% of the fossil fuels produced are used to raise animals for food.(45) Grain used to feed animals could feed an extra 1.3 billion people. Animal-based diets for the middle class means hunger for the poor. On top of this, the manure from factory farms pollute rivers and the sea, creating dead zones sometimes hundreds of miles wide.

When a tree is cut down, it releases carbon into the atmosphere. But when it is allowed to grow it continues to absorb carbon. The more trees humans cut down, the greater we compound the carbon problem. Conversely, the more acres of forests humans regrow, the stronger the potential for climate recovery. Humans inherited a planet with 6 billion hectares (23m sq mi) of forest and about 4 billion (15m sq mi) remains. At the current rate of forest loss, 19 million hectares (73k sq mi), the size of Washington state, will be destroyed each year. Over half of Earth’s forests will be wiped out within a century. Of the world's 1.5 billion acres (2.3m sq mi) of remaining rainforest, only 500 million acres (781k sq mi) are protected.(46)

Every year, between 10 and 15% of the carbon released into the atmosphere, or 5 billion tons of CO2, comes from deforestation. This is about the same volume of carbon pollution produced by automobiles, trains, ships, and airplanes combined. Fortunately, the cost of rainforest conservation is economical. For as little as the price of a cup of coffee a day, individuals can help to save an acre of rainforest through various land trusts and NGOs. And each acre of rainforest safely stores about 200 tons of CO2, which is in excess of the avoided CO2 from buying an electric car, or installing home solar panels.

Besides the environmental damage, Western mainstream animal consumption is a factor in spiraling human ill-health, diabetes, cancers, non-communicable and chronic diseases, malnourishment, and obesity. And, it is causing antibiotic resistance bacteria, the spread of infectious diseases, hunger and global epidemics.

Rather than curtailing this dietary catastrophe, vested interests continue to promote animal carcass, chicken eggs, and cow's milk consumption, and block all efforts at reform. If people are deliberately misinformed or have no access to reliable information, what chance do they have to make the right food choices?

While elevated atmospheric CO2 can act as a fertilizer to enhance plant growth, and water use efficiency, in a wide range of crop species, these positive effects may not compensate for losses associated with heat stress, lessen water availability, weather extremes, accrued tropospheric ozone, and transformations in weed, insect, and disease dynamics.(47) Extreme temperatures and rising ozone can cause severe losses in a range of staple crops, like wheat, maize, soybean, rice, and fruit.(48) Variations in the yield of these major crops have extraordinary implications for food pricing and availability for families across the world, in developed and developing nations.(49)

Chapter 2: MEAT THE FUTURE page 15

For more information, see MeatClimateChange.org

nature on the edge

unsustainable human activity 

is pushing the planet’s 

natural systems 

that support life on Earth 

to the edge


in 2020 the international community 

did not fully achieve 

any of the 20 Aichi 

biodiversity targets 

agreed in Japan in 2010 

to slow the loss of the natural world

along with missed targets

$500bn (£388bn) in government subsidies 

is still being invested 

in environmentally damaging 

agriculture, fossil fuels and fishing 


the UN's global biodiversity outlook 5

reported that more than 

60% of the world’s coral reefs 

are under threat

because of overfishing 

and destructive practices


the living planet index (LPI) 

tracks almost 21,000 populations 

of mammals, birds, fish, reptiles 

and amphibians around the world


the 2020 LPI show

an average 68% fall 

in almost 21,000 wildlife populations 

between 1970 and 2016


a two-thirds decline 

in less than half a century 

due in large part 

to the very same 

environmental destruction 

which is contributing 

to the emergence 

of zoonotic diseases 

such as COVID-19


1 in 5 plants are threatened with extinction

the current rate of plant extinction 

is twice that of mammals

birds and amphibians combined


since 1970 the average decline 

in freshwater population size 

is 84% 

the starkest population decline 

in any biome

equivalent to 4% per year

 

why are we losing nature?

we are the cause

overconsumption

overexploitation

pollution

changing land use 

for food production 

is the biggest driver 

of nature loss

about 50% of the world’s 

habitable land area 

is already used for agriculture 

for livestock such as cattle and pigs 

and for crops that feed 

both people and livestock


if we continue to destroy the natural world

we will see more outbreaks like COVID-19 

and the next pandemic 

could be even more deadly and costly

business-as-usual will result

in even more steep population declines


we need nature

nature is a solution

nature can help 

to address climate change 

directly 

or to reduce vulnerability 

to the negative impacts 

of climate change



Global Biodiversity Outlook (GBO) is published by the Convention on Biological Diversity (CBD)

https://www.cbd.int/gbo5

The Living Planet Index (LPI) is provided by the Zoological Society of London (ZSL)

World Wide Fund For Nature (WWF) - Living Planet Report 2020

https://livingplanet.panda.org/en-US/

climate fires 911

2020 fires are having a banner year

dozens of major fires are burning

as of september 11, across the west

one hundred large fires have burned 

over 4.5 million acres in 12 states

more than one million acres in oregon

as 500,000 people evacuated

smoke from west coast wildfires 

were pulled into a cyclone 1,000 miles offshore


2020 is california's largest wildfire season

with five of the twenty largest wildfires in state history

on august 19, there were 367 known fires

many sparked by intense thunderstorms on august 16–17 

caused by moisture from tropical storm fausto


as of september 11, a total of 7,718 fires 

have burned 3,354,234 acres

more than 3% of the state's 100 million acres of land

destroyed 6,391 buildings

caused over 24 deaths and 37 seriously injured


the august complex has surpassed 

the mendocino complex of 2018

to become california's largest recorded wildfire

followed by number three, SCU lighting complex

four, LNU lighting complex

nine, north complex 

and 16, the creek fire


standing on the ashes of the state

as the ground bakes in record heat

blasted by diablo and santa ana winds 

gov newsom said climate change

and drought are to blame

yet, so far this year, the gov has granted 

1,800+ oil and gas permits

and in the midst of a historic drought

precious groundwater is used for fracking

streams are diverted for livestock


the west coast is ground zero

climate change plus business-as-usual

is leading to recording breaking disasters

denial, de-growth and destruction

are the new normal

this year's climate fires 

is a 911 wake-up call

are you going to answer

are you willing to stop ecocide 

Pandemics Ahead

Pandemics Ahead is a series of articles looking at the link between animal protein and global health disasters. The articles are excerpts from Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages. ISBN: 0692641157. http://amzn.to/2yn7XrC

See also Meat Society, a series exploring issues related to curbing demand for animal products, an important climate change solution for individuals and nations alike, especially in Western states where meat and diary consumption dwarfs other regions. See also our COVID-19 Meat Pandemic Bibliography with a categorized listing of Online News and Reports (March to June, 2020).


For more information, see MeatClimateChange.org

Dead Zones

Pandemics Ahead: Number 11 in a series looking at the link between animal protein and global health disasters.

Excerpt from Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages. ISBN: 0692641157. http://amzn.to/2yn7XrC

The manure from factory farms contains ammonia which is highly toxic to fish at low levels. Escalating the amounts of manure and nutrients, such as nitrogen and phosphorus from livestock production, can cause algal blooms which block waterways and deplete oxygen as they decompose. This often kills fish and other aquatic organisms, devastating the entire aquatic food chain.(929)

The concentration of nitrate in the ground water supply can reach unhealthy levels. Infants up to three months of age are especially susceptible to high nitrate levels and may develop Blue Baby Syndrome (methemoglobinemia), an often fatal blood disorder.(930) In 1996, the CDC established a link between spontaneous abortions and high nitrate levels in Indiana drinking water wells located close to feedlots.

Almost all the US feed production and industrial farms are concentrated along the Mississippi River basin. A liter of seawater commonly holds around 7 milligrams of dissolved oxygen, but around the mouths of the Mississippi, it holds less than 2 milligrams. The only organisms active here are those that do not depend on oxygen to live. Most summers, between 13,000 to 20,000 sq km (5,000-7,700 sq mi) of sea at the mouth of the Mississippi becomes a "dead zone."(931) 

Nearly 400 dead zones ranging in size from one to over 70,000 sq km (27,000 sq mi) have been identified, from the Scandinavian fjords to the South China Sea. Animal farming is not the only cause, but it is one of the worst. In Asia, pig and chicken feed farms in coastal China, Vietnam, and Thailand regularly pollute the South China Sea. The northern part of the Caspian Sea is loaded with nitrogen that comes down the Volga. Many of the seas surrounding Europe are affected - the Baltic Sea, the Black Sea, the Irish Sea, the Spanish coast, and the Adriatic, all have dead zones.

Not all algal blooms are toxic, but some kinds of algae do produce toxins, such as domoic acid, which is a powerful and fatal neurotoxin. Toxic algal blooms impact the lowest levels of the food chain first, in shellfish and feeder fish that larger marine animals feed on. Even if the toxins do not kill the larger marine animals, toxic algal blooms can wipe out lower levels of the marine food chain and decimate supplies of food that larger marine animals rely on.

Climate change may encourage longer and more frequent blooms of toxic algae along Canada's Pacific coast, impacting marine communities as far north as Alaska with much more consistency than in the past. This is because algae thrive in warmer waters, which both encourage growth in certain kinds of algae and discourage a mixing of ocean waters. And Alaskan waters are some of the most rapidly warming waters in the world, having risen by 3 degrees C in the past decade.(932)

Chapter 25: WASTE POLLUTION, page 241
    Previous  |  Home  |  Next

For more information, see MeatClimateChange.org

Climate Reality Leader



At the end of August, 2018, we spent three days at The Climate Reality Project training in Los Angeles, lead by former Vice-President Al Gore. The information-packed training was well-organized and attended by over 2,200 new trainees from 40 countries. There were several sessions on the climate crisis and solutions, including those adopted by California. Al Gore made a powerful 2 1/2 hour slideshow presentation on the first day of the event, and a 10-minute version of the same slideshow on the last day. Gore's presentations included several extreme climate events that occurred in July and August 2018.

Interestingly, the climate literacy and outreach training was underfunded by Alan Horn, chairman of Walt Disney Studios, who spoke on day three of the conference. Horn noted that one day this summer, as he got into his car in Los Angeles, the temperature gauge in his Tesla electric vehicle read 118 degrees Fahrenheit. And Gore revealed that one of his billionaire friends lost his home in a recent California fire. Climate change is affecting the rich, and some are realizing that their vast wealth may not be able to insulate their grandchildren from its worsening effects.

One of the most notable speakers was leading climate scientist, Prof. V Ramannathan of  Scripps Institute, who released a peer-reviewed study three months ago warning that Earth was facing an existential crisis. The leading climatologist noted that when he presented the paper at a recent conference in Europe, he expected some push-back from the conservative scientific community. However, to his surprise, not one person said anything. In private, other scientists admitted to Ramannathan that they had reached the same conclusion as well.

One of the most important takeaways from the event was understanding how the climate crisis and equity issues are inter-related. Environmental racism is structural, systemic and planned since polluting industries are usually located in disadvantaged neighborhoods. Minority communities are on the frontlines of the fossil fuel industry, and are dealing with its effects all day, year round. They need help, but the green movement has largely ignored issues facing minorities in the inner cities. Consequently, environmental injustices have become normalized, and even impacted communities view negative health effects as inevitable. Sadly, African American children suffer asthma at 10 times the rate of European American children, part of the collateral damage of the fossil-fuel economy.

We were especially moved by the story of 17-year old Nalleli Cobo, who was born and raised in Los Angeles, next to an oil well. As a child, Nalleli was sickly and suffered from asthma. When she was nine years old, Nalleli grew tired on being sick and suffering from toxic air pollution caused by the oil well and started to organize others in her community to resist the oil company. They group gained support from local environmental organizations and eventually were able to get the well shut down.

By shutting down one oil well, Nalleli and others in her community effected change that improved their health and lowered greenhouse emissions that impacts all of us. Nalleli proves that when we act locally, we can have global impacts. The zero hour for young people is now. We must act to help Nalleli and all children from being condemned to a living hell in hothouse Earth. We must do all we can to reduce, reuse, and recycle, travel less, eat plant-based foods, and lower our carbon footprints. Even if there is little or no chance for success, we must persevere. Our children deserve no less.

Carnism and Climate Justice


Carnism and Climate Justice
by Moses Seenarine, 01/16/18

Inclusive wealth is the sum of a community's capital assets, including natural assets like fish or trees, but also human health and education, as well as built assets like roads, buildings and factories. A changing climate can reallocate natural capital, change the value of all forms of capital, and lead to mass redistribution of wealth.

"Inclusive wealth" is shifting out of the temperate zones and toward the poles as global temperatures rise. Climate change is thus taking inclusive wealth from the poor and giving to the rich. This reallocation of resources from the global South to the global North should be an essential part of climate justice.

Climate justice advocates view planetary heating as an ethical issue and scrutinize how its causes and effects relate to concepts of justice, particularly environmental justice and social justice. Climate justice is a struggle over land, forest, water, culture, food sovereignty, collective and social rights. It is a struggle that considers “justice” at the basis of any solution. This can mean examining issues such as equality, human rights, collective rights and historical responsibility in relation to environmental degradation and climate warming. Recognizing the fact that those least responsible for climate chaos will experience its greatest impacts is central to climate justice.

Advocates point out that there are racial and class differences in responses to social and environmental disasters, like with Hurricane Katrina in 2006. Katrina culminated in the displacement of 400,000 individuals along the US Gulf Coast and disproportionately affected low-income and minority victims. The groups most vulnerable to the Katrina disaster were the poor, black, brown, elderly, sick, and homeless. Similarly, when Superstorm Sandy hit New York in 2012, 33% of individuals in the storm surge area lived in government-assisted housing, and half of the 40,000 public housing residents of the city were displaced.

Katrina, Sandy, and other disasters show that climate inequalities are horizontal as well as vertical. For example, (i) women face greater endangerment than men; (ii) rural communities are exposed to a larger extent than urban ones; and (iii) groups marginalized because of class, race, ethnicity, migration and other factors are likely to be disproportionately affected.

The global livestock sector is part of the reallocation of the global South's resources to the global North. The food animal industry is a slower and less noticeable environmental disaster than a hurricane, but it is more widespread and involves far greater forms of human and nonhuman animal oppression. Loss of land rights, indigenous dispossession, trafficking and sexual oppression are part and parcel of the livestock sector, so food animal production and consumption are essential climate justice issues. 

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine, [ http://amzn.to/2yn7XrC ]

Peak Yield? Climate and Crop Productivity


Peak Yield? Climate and Crop Productivity
by Moses Seenarine, 12/19/17

Since the 1960s, feed crops' yield growth have jumped remarkably, but this rise is part of an ongoing process over the past 10,000 years. In pre-historic times, it took 3,000 acres (12 sq km) of land to feed one human forager, but now it takes 1/3 of an acre (1,300 sq m) to feed one person. So the amount of food grown per acre (43,500 sq ft) has multiplied by a factor of 10,000 in 10,000 years. 

Global grain yields now average about 3.5 tons per hectare (2.5 acre). In the US, yields are double at seven tons per hectare. That difference in yield primarily reflects more access to capital and energy by US farmers and TFCs who can afford vast quantities of fertilizer, mechanized farm equipment, irrigation systems, pesticides, and other tools that dramatically boost agricultural yields, at least in the short-term. 

An analysis of the effects of 2,800 weather disasters in 177 countries on 16 cereals from 1964 to 2007 show that climate change may have already begun to take a toll on agriculture. Drought and extreme heat in the last 50 years have reduced cereal production by up to 10%. And, the impact of these weather disasters was greatest in the developed nations of North America, Europe, Asia and Australia. Production levels in the global North dropped by 20% because of droughts, double the global average. 

Crops and methods of farming are uniform across immense areas, so if a drought occurs in a way that is damaging to those crops, they all suffer. In agriculture, crop yield or agricultural output, refers to both the measure of the yield of a crop per unit area of land cultivation, and the seed generation of the plant itself. For instance, if three grains are harvested for each grain seeded, the resulting yield is 1:3. The figure, 1:3 is considered by agronomists as the minimum required to sustain human life. 

Ominously, grain yields are already stagnant and have stopped rising in many parts of the world. On a global scale, stagnating yield is affecting four major grain types that produce two-thirds of the world's calories - maize, rice, wheat and soybeans. Yields of these four crops are growing by only 0.9 to 1.6% a year. Yields in 25% to 33% of the crop producing areas are stagnating, like those in Australia, Argentina, Guatemala, Morocco, Kenya, and the US states of Arkansas and Texas. In parts of the UK, in areas that produced the highest outputs 20 years ago, yields have actually dropped. 

Just nine or 10 plants species principally feed the world. An international research team ascertained that 16 of the 21 foods they inspected reached peak production between 1988 and 2008. Menacingly, this synchronization of peak years in upwards of three-quarters of edible plants suggests the whole food system is becoming overwhelmed. Maize reached its peak rate in 1985, followed by rice three years later, in 1988. Vegetables reached their peak rate in 2000, while wheat reached its peak rate in 2004, followed by sugarcane in 2007. Soybean reached its peak rate in 2009. As an outcome of peak food, larger production means greater amounts of land under cultivation.

Since GM crops were planted, the US staple crop system has performed worse than non-GM crops in Europe - in yields, pesticide use, genetic diversity and resilience. For the US system, there is a dangerous downward yield trend in recent years. Stagnating yields may be due to the soil damage caused by the use of heavy machinery and a long-term decline in organic matter content in soils. The upshot is additional fertilizers have to be used to boost yields. 

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Hothouse Earth: Plants and Climate Change


Hothouse Earth: Plants and Climate Change
by Moses Seenarine, 12/19/17

Raising carbon dioxide levels are not necessarily good for agriculture. The benefits of CO2 for plants may be less than previously thought and potentially counteracted by the damaging effects of the proliferation of surface ozone. Agriculture has always faced the challenge of weather variability, and altered agricultural conditions under a transforming climate could exceed farmers’ ability to adapt. 

Farming could easily become adversely affected by (i) extreme heat and escalating water demands; (ii) inflated frequency of severe weather events, such as drought and flood; (iii) sea level rise and flooding of coastal lands; and (iv) modification in crop nutrient content. Variability is also likely to occur in (v) the number and type of pathogens and pests affecting plants and livestock; (vi) altered use of pesticides; (vii) damage to fisheries and aquaculture; and (viii) mycotoxin contamination. 

There are numerous fine-scale processes that can moderate vegetation responses to nitrogen deposits. While smaller amount of nitrogen may act as fertilizer, stimulating growth in plants, large accumulated amounts can (ix) decrease soil health and cause a loss in the number of plant species. These vital food security issues need to be dealt with and modeled into future plans for livestock expansion. 

The reality is animal-based diets will become even less efficient and further wasteful as planetary heating intensifies. The FAO's 2006 and 2013 assessments do not fully factor in the effects of climate warming on plants and crops. In particular, as the land warms, drought may reduce tree productivity and survival across many forest ecosystems. If the vapor-pressure deficit continues to climb, forest drought-stress by the 2050s will exceed that of the most severe droughts in the past 1,000 years. 

The world's food authority uses different baseline scenarios for improved land management for livestock over a 20-year period. But they model weather data from 1987 – 2006. This climate assumption is challenged by recent weather-related (a) lower crop yields, (b) feed crop failures, and (c) livestock die-offs. Upwards of 60% of crop yield variability can be attributed to climate irregularity. And unnervingly, this variation occurs in regions that are principal producers of major crops, like the Midwestern US, the North China Plains, western Europe and Japan. 

Direct climate impacts to maize, soybean, wheat, and rice under a RCP 8.2 scenario could involve average losses of 400–2,600 calories, or 8 to 43% of the present-day total. Freshwater limitations in some heavily irrigated regions could necessitate reversion of 20–60 Mha (77k – 231k mi) of cropland from irrigated to rain-fed management, and a further loss of 600–2,900 Pcal. 

These projections are a major cause for concern. Many subtropical arid and semi-arid regions will probably experience less precipitation. In wet tropical regions, extreme precipitation events will be further intense and frequent. Monsoon onset dates will start earlier while withdrawal rates are going to be delayed, resulting in a lengthening of the season. Tropical cyclones are expected to become extra intense, with stronger winds and heavier rainfall. In addition, variability of climate, such as El NiƱo events, has large impacts on crop production. 

Africa will be the part of the world that is most vulnerable to climate variability and alteration. East Africa will experience further short rains, while west Africa will get heavier monsoons. Much higher temperatures could reduce the length of the growing period in some parts of Africa by up to 20%. 

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Whose Carbon Footprint is Larger? Diet Versus Over-Population


Whose Carbon Footprint is Larger? Diet Versus Over Population
by Moses Seenarine 12/15/17

Many parts of the world expect substantial modifications in population size, age structure, and urbanization this century. These variations can affect energy use and GHG outflows. In particular, aging, urbanization and variations in household size can substantially influence GHG footprints in some regions. 

Aging will occur in most regions, due to declines in both fertility and mortality. Aging is expected to be particularly rapid in regions like China that have recently experienced sharp falls in fertility. On the positive side, slowing population growth could provide 16–29% of the GHG reductions suggested to be necessary by 2050 to avoid dangerous climate transformation. 

There is an inverse relationship between the two main drivers behind increased land requirements for food – as socioeconomic development improves, population growth declines. At the same time, diets become richer. Typically, consumption of animal protein, vegetable oil, fruit and vegetable swells, while starchy staples become less essential. With higher purchasing power comes higher consumption and a greater demand for processed food, animal carcass, cow milk products, chicken eggs, and fish, all of which add pressure to the food supply system. This over-consumption severely affects global sustainability, equity, food security, and GHG emissions. 

During a span of 46 years, from 1961 to 2007, a review of FAO data showed that in most regions, diets became richer while the land needed to feed one person diminished. In many regions, dietary change may override population growth as a major driver behind land requirements for food in the near future. Potential land savings through yield improvements are offset by a combination of population growth and dietary change. These dynamics were the largest in developing regions and emerging economies. 

Notably, additions to the total per capita food supply were not observed everywhere around the world. In most developed regions, the share of animal products is extraordinary high. From 1961 to 2007, food animals constituted one-third of the available calories in the global North, compared to 10% or less in many of the poorer regions in the global South. These over-consumption dynamics are slowly changing but remains highly skewed. 

The FAO projects that world population will expand 34 to 41% by 2050 to reach 8.9 - 9.1 billion. Food demand will soar upwards by 70%, and daily per person calorie intake will rise to 3,130 calories. Food is a major part of climate warming, but it is essential for survival, security and equity. Although the consumption per capita of cereals is likely to stabilize, population growth will escalate the demand for both food animals (almost doubling) and cereals for feed (50%) by 2050. 

Another problem related to over-consumption is the hidden population of obesity. The average body mass is climbing at a sharp pace. For the first time in human history obese people outnumber underweight people. Almost 11% of men and 15% percent of women worldwide are obese, while under 9% of men and 10% of women are underweight. In 2005, global adult human biomass was 287 million tonnes, of which 15 million tonnes came from being overweight. This extra mass is equivalent to that of 242 million people of average body mass or 5% of global human biomass. Biomass from obesity was 3.5 million tonnes, the equivalent of another 56 million people of average body mass. 

In 2012, the US came in third following the Pacific island nations Micronesia and Tonga for having the highest average weight in the world. By comparison, Americans are 33 pounds heavier than the French and 70 pounds bigger than the average Bangladeshi. In addition to extra energy and food demands, severe and morbid obesity are associated with highly elevated risks of adverse health outcomes.

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

New Release

New Release - Cyborgs Versus the Earth Goddess

Now Available! Cyborgs Versus the Earth Goddess: Men's Domestication of Women and Animals and Female Resistance by m seen...

Popular