Showing posts with label science. Show all posts
Showing posts with label science. Show all posts

2020 Climate Review

As the 2021 year begins, we review some important climate developments last year. First of all, 2020 tied 2016 for the hottest year on record globally. Second, 2020 continues a rapid heating trend as the last seven years have been the warmest in 150 years, and it concludes the warmest decade on record.  

Average global temperatures in 2020 were 1 degree Celsius (about 2 degrees Fahrenheit) warmer than in the 30-year average between 1951 and 1980. Since 1980, warming has averaged around 0.2 degree C (0.32 degrees F) per decade. NASA Global Climate Change's Vital Signs of the Planet report that CO2 level is now 415 ppm, the Arctic ice minimum loss is 13.1 percent per decade, the ice sheets are losing 428 billion metric tons per year, and sea level is raising at 3.3 millimeters per year. 

The changing climate is contributing to stronger hurricanes, larger and more destructive wildfires, and heavier rainfall that can cause flooding. Rising temperatures are also causing loss of sea ice and ice sheet mass, sea level rise, longer and more intense heat waves, and shifts in plant and animal habitats.

There were record fires in Australia and California, and severe drought in central South America and the American Southwest. Notably, 2020 was a La Nina year, with cooler temperatures in the vast Pacific Ocean. Yet, Typhoon Goni made landfall in the Philippines as the strongest tropical cyclone in history with sustained winds of 195 mph. 

Europe and Asia had their hottest years on record, while South America and the Caribbean had their second-hottest. Europe had its warmest year ever in 2020, with heat waves lasting into September. The world’s oceans had their third warmest year. The Arctic and Siberia were among the hottest regions, around 6 degrees C warmer than the mid-20th century average. In South American, warming and drought resulted in fires across the vast Pantanal wetland.  

According to NOAA, the US experienced $95 billion in climate disaster damages, with major disasters like the western wildfires, a record-breaking hurricane season and the mid-summer Midwest derecho that caused extensive damage. There were 22 weather and climate disasters in 2020 that cost over $1 billion in damages, surpassing the annual record of 16 billion-dollar disasters in 2017. The Atlantic Basin produced 30 named storms, with 13 of those becoming hurricanes. This topped 2005, which previously had the most storms in a season, 28. And, a record-breaking 12 named storms made a US landfall in 2020. Six of the US landfalls were from hurricanes - Hanna, Isaias, Laura, Sally, Delta and Zeta - far above the average of one to two hurricane landfalls per year.

Phoenix, AZ, saw 145 days of 100-degree heat, breaking the previous record of 143 days set in 1989. Miami, FL, saw daily record temperatures (record warm highs, record warm lows) broken or tied a combined 64 times in 2020. The temperature in Death Valley, CA, reached 54.4 degrees C, the hottest in 80 years. Meanwhile, the Siberian town of Verkhoyansk reported a summer temperature of 100.4 degrees F, the first time recorded temperatures above the Arctic Circle have surpassed 100 degrees F.

As the 2020 year ends, some of the changes scientists are exploring include the weird fact that nights are warming faster than days, and how climate change is harming children's diets. Global warming is faster than evolution, and is making baby sharks smaller, undernourished and exhausted. Also, researchers found that global warming has profoundly transformed Arctic in just 15 years, the urban heat-island effect is turning cities into ovens, and that the warming already baked in will blow pass climate goals.

Although the political climate improved in the US at the end of the year, there has been decades of climate denial and limited action. This polluting legacy means that the new administration's climate policies may fall well short of what is needed to slow down abrupt climate change in 2021 and beyond.

Sounding the Alarm on Carnism

Meat Society: Number 14 in a series exploring issues related to curbing demand for animal products, an important climate change solution for individuals and nations alike, especially in Western states where meat and diary consumption dwarfs other regions.

Excerpt from Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages ISBN: 0692641157 http://amzn.to/2yn7XrC

Hundreds of ecologists and agricultural scientists are actively sounding the alarm by highlighting calls for action on animal-based agriculture. A growing body of research points out that eating animal products is inefficient from the perspective of land, water and energy. And, intake of food animals is equally undesirable from a socio-economic, health, biodiversity, climate warming, and animal welfare point of view.

There are hundreds of researchers investigating the link between climate warming and animal-based diets, and over four dozen studies are listed below. These papers are a limited sample of a large body of research encompassing diverse disciplines, from nutrition to environment. Several areas of this literature are beyond the scope of this article, like animal welfare and advocacy, but they are no less consequential.

(1) In 2001, the World Bank began to be critical of funding for large-scale livestock projects due to their impacts on the environment and on social equality. The World Bank strategy recommended that institutions should “avoid funding large-scale commercial grain-fed feedlot systems and industrial milk, pork and poultry productions”(376)

(2) In 2003, Pimentel contended that the dietary pattern in North America is unsustainable. Producing the equivalent measure of protein from animals takes 11 times the amount of fossil fuel and 100 times the volume of water than vegetable protein.(377) (3) In 2007, a group of health researchers concluded that to prevent greenhouse gas (GHG) pollution, the worldwide consumption level of animal products and the intensity of emissions from food animal production must be reduced.(378)

(4) In 2008, Tara Garnet argued that animal-based meals must be rationed to four portions a week to avoid run-away global warming. Garnet concluded, "Efforts to encourage us voluntarily to change will not achieve what is needed in the time available. Regulatory and fiscal measures that change the context within which we consume are vital."(379)

(5) Gowri Koneswaran and Danielle Nierenberg concluded that to mitigate climate-altering gases from the food animal sector, immediate and far-reaching changes in production practices and intake patterns “are critical and timely.”(380) (6) The film, Meat the Truth, was presented in London in 2008, and is available in 13 languages in 16 countries. Meat the Truth was the first documentary to link livestock farming and GHG pollution. The book Meat the Truth, is the continuation of the documentary. The anthology contains papers by prominent food scientists, such as Geoff Russell, Elke Stehfest, Barry Brook and Harry Aiking. Researchers from Wageningen UR, who reviewed the calculations of the film, by request of a Dutch Minister, submitted to the collection as well.(381)

(7) In 2009, Marlow's team determined that a nonvegetarian diet required 2.9 times more water, 2.5 times more primary energy, 13 times more fertilizer, and 1.4 times more pesticides than did a vegetarian diet. And the greatest contribution to the differences came from the consumption of cow flesh.(382) (8) Lord Stern, author of the 2006 Stern Review, on the cost of tackling planetary heating, and a former chief economist of the World Bank, stated that the 2009 climate conference in Copenhagen should have called for a hike in the price of animal products and other foods that play a part in climate warming.(383)

(9) John Powles argued that finding paths to globally sustainable patterns of animal food production and consumption should be central to climate change policy deliberations. He wrote, “On grounds of geopolitical feasibility (as well as equity), there is no obvious alternative to a policy of ‘contraction and convergence’ - contracting consumption levels in rich countries to leave room for consumption in poor countries to converge upwards.”(384)

(10) A 2009 examination by the Netherlands Environmental Assessment Agency determined that global food transition to less animal consumption, or even a complete switch to plant-based protein food, would have a dramatic effect on land use. Up to 2.7 billion hectares (about 10.4 million square miles) of pasture and 100 million hectares (about 386,000 square miles) of cropland could be abandoned.(385) If implemented, by 2050 universal veganism would cut agriculture carbon dioxide (CO2) by 17%, methane (CH4) by 24%, and nitrous oxide (N2O) by 21%. This would cause a large carbon uptake from regrowing vegetation and reduce the mitigation costs to achieve a 450 ppm CO2e stabilization target by about 50% in 2050.

(11) Sonesson's team in 2010 noted, "One aspect that potentially is one of the most powerful in combating food’s impact on climate change is the choice of products, i.e. our diets. Since the differences in life cycle GHG emissions are so very large between products fulfilling similar nutritional functions, the scope for improvement is large."(386)

(12) A 2010 UNEP report stated: "Impacts from agriculture are expected to increase substantially due to population growth increasing consumption of animal products. Unlike fossil fuels, it is difficult to look for alternatives: people have to eat. A substantial reduction of impacts would only be possible with a substantial worldwide diet change, away from animal products."(387) The lead author of the UNEP report said: "Animal products cause more damage than construction minerals such as sand or cement, plastics or metals. Biomass and crops for animals are as damaging as fossil fuels."(388)

(13) Katherine Richardson and her co-authors noted in their 2011 book that by contributing to global warming “livestock plays a significant role in effecting ecosystem services at global scales by changes such as modified precipitation patterns, warmer climates, carbon storage in soils, changes in extreme events and other predicted feedback changes of global warming with results from local to global scales.”(389)

(14) In 2011, an Australian team showed that the efficiency of grains are 146 to 560 times that of cattle on an emissions intensity basis, and cattle can emit up to 22 pounds of CO2e per pound of flesh.(390) (15) The lead editor of the European Nitrogen Assessment, Mark Sutton, said, “Nearly half the world’s population depends on synthetic, nitrogen-based fertilizer for food but measures are needed to reduce the impacts of nitrogen pollution. Solutions include more efficient use of fertilizers and manures, and people choosing to eat less meat.”(391)

(16) A Swedish group calculated the GHG footprint of 84 common food items of animal and vegetable origin. It covered CO2e pollution involved in farming, transportation, processing, retailing, storage and preparation. The team observed that animal-based foods are associated with higher energy use and GHG outflows than plant-based foods.(392)

(17) Wirsenius concluded that reducing the intake of meat and cow's milk will be indispensable for reaching the 2°C (3.6°F) target with a high probability. He suggested that taxing animal flesh would lead to significant GHG reductions.(393) In a similar way, (18) Foley calculated that shifting to an all-plant diet could increase food calories by 50%, a staggering 3 quadrillion calories per year, and significantly lower GHG emissions, biodiversity losses, water use and water pollution.(394)

(19) Weiss and Leip suggested in 2012 that for effective reduction of GHG emissions from livestock production, releases occurring outside the agricultural sector need to be taken into account. And reduction targets should address both the production side as defined by IPCC sectors, and the consumption side.(395)

(20) A Union of Concerned Scientists report in 2012 warned, “Clearing forest for pastures makes money, but it also causes global warming pollution.” The effects of tropical deforestation are responsible for about 15% of the world’s heat-trapping emissions. And three-fifths of the world’s agricultural land is used for cattle that yields less than 5% of humanity’s protein.(396)

(21) Also in 2012, researchers at the University of Exeter argued that encouraging people to trim back the quantity of food animals they eat could keep global temperatures within the 2°C (3.6°F) threshold. Tom Powell said, “Our research clearly shows that recycling more and eating less meat could provide a key to re-balancing the global carbon cycle.”(397) Powell continued, “Meat production involves significant energy losses - only around 4% of crops grown for livestock turn into meat. By focusing on making agriculture more efficient and encouraging people to reduce the amount of meat they eat, we could keep global temperatures within the two degrees threshold.”

(22) Nijdam's analysis of over 100 protein foods ascertained that the carbon footprint of the most climate-friendly, plant-based protein sources is up to 100 times smaller than those of the most climate-unfriendly, animal-based protein sources.(398) (23) A 2012 UK study concluded that food policies must focus on demand rather than supply-side measures to address GHGs as a global issue.(399)

(24) One study found that a non-vegetarian diet uses about 2.9 greater volume of water, 2.5 greater mass of primary energy, 13 times the sum of fertilizer, and 1.4 extra volume of pesticides. And it generates GHG pollution to a far greater extent than a vegetarian diet.(400) (25) Another group calculated that 22% and 26% of GHG savings can be made by moving from the current UK-average diet to a vegetarian or vegan diet, respectively.(401)

(26) Shifting crops from animal feed to human food could serve as a 'safety net' when weather or pests create shortages. Davidson, director of the Woods Hole Research Center, reasoned that the developed world will have to cut fertilizer use by 50% and persuade many consumers to stop eating so many food animals in order to stabilize nitrous oxide (N2O) releases by 2050.(402)

In 2013, (27) Sutton and Dibb calculated that (i) almost a third of global biodiversity loss is attributable to livestock production, (ii) food animal intake is responsible for nearly half of the UK food GHG emissions, and (iii) the estimated cost to the National Health Service in early deaths is £1.28 billion ($1.82b).(403) 

On a global scale, (28) Emily Cassidy projected that a shift from crops destined for animal feed and industrial uses toward human food could increase available calories by 70% and feed an extra 4 billion people each year.(404) (29) A Swedish report stated that policy makers should discuss and try to influence what their citizens eat.(405) (30) And, a Danish study found that taxes are a low cost way of promoting climate friendly diets without large adverse health effects.(406)

(31) One more study concluded, “The emission cuts necessary for meeting a global temperature-increase target of 2° might imply a severe constraint on the long-term global consumption of animal food. Due to the relatively limited potential for reducing food-related emissions by higher productivity and technological means, structural changes in food consumption towards less emission-intensive food might be required for meeting the 2° target.”(407)

(32) In 2014, the "Meat Atlas" by Friends of Earth Europe, claimed that livestock directly or indirectly produces nearly 33% of the anthropogenic climate-altering gases.(408) (33) Also in 2014, the Chatham House report concluded that dietary change is essential if planetary heating is not to exceed 2°C (3.6°F).(409) 

(34) Researcher Aiking warned, "Under the current conditions of an unprecedented global population size it may be time to rethink issues such as consumer freedom (diet choice) compared with global food security, the use of 2.48 million tons of fish for cat food, and free trade."(410)

(35) Bajželj's model of agriculture related GHGs is one of the most robust experiments. The study warned that severe reductions in animal consumption are necessary, otherwise, agricultural GHG pollution will take up the entire world’s carbon budget by 2050, with animal agribusiness being a major contributor.(411)

(36) Tilman in 2014 projected that dietary trends, if unchecked, would be a major contributor to an 80% surge in global agricultural GHGs by 2050. This means all other sectors, like energy, industry, and transport, would have to be zero carbon by then, which is highly unlikely.(412) (37) Eshel's investigation showed that the biggest intervention people could make towards reducing their carbon footprints are not to abandon cars, but to eat significantly less red meat.(413)

(38) West's team calculated agriculture emissions of climate-altering gases are between 20% and 33% of total manmade GHGs - from deforestation, methane, and fertilizers. In contrast, by not feeding crops to domesticates, using fertilizer where it is needed, and avoiding overuse, countries could bring down GHG outflows markedly.(414)

(39) Ripple and other scientists suggested that just like a carbon consumption tax, a tax on animal flesh could encourage people to eat less of them.(415) (40) Elin Hallström's team found that simply reducing carcass over-consumption to dietary guidelines will lower GHG pollution from livestock production in Sweden from 40% to 15–25% by 2050, and cropland use from 50% to 20–30%.(416)

(41) Soret's health-based 2014 study used a nonvegetarian diet as a reference, and found that reductions in GHGs for semi-vegetarian diet was 22%, and for vegetarian diets it was 29%. On top of this, the mortality rates for non-vegetarians, semi-vegetarians, and vegetarians were 6.66, 5.53, and 5.56 deaths per 1000 person-years, respectively.(417)

(42) In 2015, Elin Röös's team assessed three animal-based diets - a diet corresponding to Nordic recommendations, the current average Swedish diet, and a low carbohydrate-high fat diet. They determined that all three diets are above the sustainable level of climate impact.(418) (43) Another Swedish study determined that taxes on animal flesh and cow's milk could reduce emissions of GHG, nitrogen and phosphorus, by up to 12% from this sector.(419)

(44) The 2015 Chatham House report concluded, “Interventions to change the relative prices of foods are likely to be among the most effective in changing consumption patterns.” The report adds that countries should aim "to increase the price of meat and other unsustainable products" through a carbon tax.(420) And (45) Hallström's 2015 review found that dietary change can reduce the sector's GHG emissions and land use demand by up to 50%.(421)

(46) Talia Raphaely's edited collection of articles in 2015 includes one by Robert Goodland, who argued that food animals contribute 51% of GHGs. Raphaely describes how carnism impacts all aspects of human life and humanity's long-term survival prospects. Yet, society continues to ignore the negative impacts of consuming animal flesh and the sector's high contribution to global GHG emissions.(422)

(47) In 2016, a large-scale study showed that methane (CH4) from manure, ruminants, landfill, and waste, and nitrous oxide (N2O) from crop cultivation, are offsetting the land carbon dioxide (CO2) sink by two-fold.(423) (48) Another 2016 study concluded, “Deep cuts, by 50% or more, in ruminant meat consumption… is the only dietary change that with high certainty is unavoidable if the EU climate targets are to be met.”(424)

(49) Chalmers' team determined that livestock carbon consumption taxes in Scotland can reduce household demand for food animal products and result in a 10.5% reduction in Scottish food GHG emissions.(425) Also in 2016, (50) Springmann found that adhering to health guidelines on food animal consumption could cut global food-related emissions by nearly a third by 2050. Moreover, widespread adoption of a vegetarian diet would bring down emissions by 63%, and veganism by 70%.(426)


Chapter 11: WHAT CRISIS? pages 108-111

Livestock's Emissions Denial?

Meat Society: Number 13 in a series exploring issues related to curbing demand for animal products, an important climate change solution for individuals and nations alike, especially in Western states where meat and diary consumption dwarfs other regions.

Excerpt from Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages ISBN: 0692641157 http://amzn.to/2yn7XrC

Science raises above religion and politics most of the time, but not when it comes to economics and the treatment of food and experimental animals. Then, science takes a back seat. The social and political contexts of animal-based diets and climate change shape engagement of both of these issues, and it is hard to get a truly balanced view.

Mirroring carnism in the general population, probably close to 95% of climatologists are consumers of animal products. And, while there is agreement on the manmade causes of global warming, this inherent conflict of interest in climatology fosters the denial of dietary footprints. As a result, even scientists who focus on methane's short-term impacts on abrupt planetary heating are largely dismissive of the voluminous discharges from animal agriculture.

Regardless of the peril, food and climate scientists, animal advocates, and health experts all face a public backlash if they are perceived as being too invasive by telling individuals what to eat and how to live their lives. These agents of change risk disapproval in trying to save the public from themselves. Yet, if climatologists continue to minimize and ignore diet-related dangers, this sets a bad example for the general public to do nothing as well.

To their credit, many environmental, food-focused, and animal protection NGOs in the US, Canada, and Sweden do mention the contribution of food animal production to climate warming on their websites. Yet, few of these NGOs have formal campaigns to reduce animal consumption, or seek to promote national-level polices to reduce the consumption of animal products.

Linking food animal consumption to climate is outside the core missions of many intergovernmental agencies as well. Moreover, many environmental organizations prefer tactics other than behavior modification promotion. Not surprisingly, then, animal protection organizations are advocating for larger reductions in animal-based consumption than environmental groups.(362)

In contrast, climate scientists and activists alike are sounding the alarm regarding fossil fuel pollution. In a controversial statement, James Hansen, arguably the world's most famous climate scientist, compared coal trains to Nazi death trains. In particular, Hansen and other climatologists call for radical and transformative modifications in the energy system. They even argue that energy producers and consumers should pay for the social cost of greenhouse gas (GHG) pollution.

Hansen writes, "If fossil fuels were made to pay their costs to society, costs of pollution and climate change, carbon-free alternatives might supplant fossil fuels over a period of decades. However, if governments force the public to bear the external costs and even subsidize fossil fuels, carbon emissions are likely to continue to grow, with deleterious consequences for young people and future generations."

While climatologists are calling for a radical transformation in fossil-based economies, few even view animal-based agriculture as relevant. Nevertheless, the mounting consumption of food animals is similar to the widening use of fossil fuels. And, the endangerment and effect on global temperature are the same. Additional anthropogenic CO2 is going to cause extra climate warming, irrespective of whether the source of CO2 is a car or a cow.

If the food animal industry and consumers were made to pay their costs to society for ill health, pollution, and global warming, plant-based alternatives might supplant animal flesh over a period of decades. But, if governments continue to force the public to bear the external costs and subsidize livestock, GHGs will proliferate with severe outcomes for children and future generations.

Unlike his views on coal, Hansen does not see cattle trains as death trains, but he does admit that one of the best actions an individual can take is to stop eating animals. “I've almost become a vegetarian,” he claimed in an interview.(363) But Hansen has never publicly discussed plant-based diet as a climate solution.

Scientists, NGOs and activists alike point out that the food animal industry is vital to incomes, employment, labor, and economies across the globe. These same arguments for jobs and economic growth are made by the fossil fuel industry. Yet, the benefits of oil, coal and gas are viewed as not enough to overcome the perils of pollution and climate warming.

In contrast, scientists and environmentalists consider the arguments made for people to go vegetarian or vegan in order to stop climate warming, and to reduce pressure on forests and food prices, as hyperbolic and bound to fail. These 'experts' have rarely inspected livestock's GHG pollution. And, they deflect the western livestock over-consumption problem by focusing on how plant-based diets would fail in the developing world.

The vast majority of the global South are primarily plant-based, though they still depend on animals for food and products such as leather and wool, for manure, and for help in tilling fields to grow crops. Subsistence and small farmers are not the main culprits of planetary heating. The lion's share of the industry's GHG pollution and growth are from industrialized factory farms.

Yet, one denier of food animals' GHGs concluded, “The notion that cows and sheep are four-legged weapons of mass destruction has become something of a distraction from the real issues in both climate change and food production."(364) This framing minimizes and trivializes the over-consumption crisis. Furthermore, it inherently provides an endorsement for large-scale livestock production, while ignoring its pollution and endangerment to humans and biodiversity.

Western livestock over-consumption patterns are a far bigger problem than animal use by the billions of poor in the under-developed world. To boot, a large part of the developed world's animal flesh and feed is imported from the under-developed world, so casting blame on them is doubly cruel. To make matters worse, environmentalists and climate activists routinely use animal husbandry among third world subsistence farmers as an excuse to reject dietary modification as a strategy for reducing climate-altering gases.

The effects of animal consumption on climate are rarely acknowledged as an issue by climate journalists or by many of the world's leading climatologists, leaders, and activists. From Ban Ki-moon, Al Gore, Renate Christ, James Hansen and Michael Mann, to Susan Solomon, Gavin Schmidt, Bill McKibben, Neil deGrassse Tyson, Bill Nye, Michael Bloomberg, Naomi Klein, Richard Tol and Bob Ward, there is mainly silence.

The following can similarly be added to the list of people in climate science who ignore and deny livestock's GHG pollution: Suzanne Goldenberg, Joe Romm, Dana Nuccitelli, Alice Bows-Larkin, Max Boycoff, Simon Buckle, Mike Childs, Tan Copsey, Susannah Eliott, Sam Geall, Will Grant, Fiona Fox, Leo Hickman, Brendan Montague, Tim Nuthall, James Painter, Chris Rapley, John Timmer, and James Wilsdon.

When they do talk about diet, climate leaders dangerously under-estimate animal agriculture’s impact. Case in point, McKibben of 350.org admits that he does not eat animal carcass that often, but claims animal agriculture can be done sustainably.(365) This reductionist position can be summed up as: “we need to move away from factory farming, adopt a modified form of grazing, and buy locally.”(366)

Nobel Laureate Al Gore, it his 2006 film on climate change, “An Inconvenient Truth,” gave minimal mention to diet in terms of its contributions to GHGs and what people can do to lower their footprints. Gore did go vegan in 2013, but he did so quietly and rarely talks of diet's link to climate change.

Dozens of climate organizations have called for divestment from fossil fuel companies. And, prompted by student activism on campus, many college endowments have started to divest from oil, coal and gas companies. Even fossil fuel heirs, like the Rockefeller Brothers Fund, have pledged to divest a total of $50bn from fossil fuels.(367)

In the release of the Intergovernmental Panel on Climate Change (IPCC) 2014 Synthesis report, UN secretary general Ban Ki-moon specifically addressed investors and pension fund managers. Ki-moon pleaded, “Please reduce your investments in the coal- and fossil fuel-based economy and (move) to renewable energy.” Similarly, UN climate chief, Christiana Figueres, urged faith groups to tell followers not to invest in fossil fuel companies.(368)

Pope Francis of the powerful Catholic church issued the first-ever comprehensive Vatican teachings on climate change, following a visit in March 2015, to Tacloban, the Philippine city devastated in 2012 by Typhoon Haiyan. (369) The edict urges 1.2 billion Catholic followers to take climate action and was sent to the world’s 5,000 Catholic bishops and 400,000 priests, who distributed it to their parishioners. 

Even Prince Charles of the UK called out corporate lobbyists, saying “Climate change skeptics are turning Earth into dying patient.”(370) Top climatologists, a Prince, and the Pope, all understand the seriousness of climate alteration, and some are even confronting the fossil fuel industry with calls for divestment. However, they are largely silent on food animals' GHGs. There is a dire need for experts and those with influence to take on animal-based agribusiness and call for zero-use and divestment from livestock production as well.

One example of this denial was evident at the UN Climate Change Conference, Lima COP20 in 2014. At the event, two of Peru’s most famous chefs give lessons in sustainable cooking to the Conference of the Parties (COP) president and the head of UN Framework Convention on Climate Change (UNFCCC). The chefs helped the VIPs prepare vegetarian ceviche using a cleaner, wood-fired cook stove. Tellingly, the press and photo opportunity event centered almost exclusively on reducing emissions by using the wood stove, rather than through dietary modifications.(371)

Chapter 11: WHAT CRISIS? page 104-5

Hothouse Earth: Plants and Climate Change


Hothouse Earth: Plants and Climate Change
by Moses Seenarine, 12/19/17

Raising carbon dioxide levels are not necessarily good for agriculture. The benefits of CO2 for plants may be less than previously thought and potentially counteracted by the damaging effects of the proliferation of surface ozone. Agriculture has always faced the challenge of weather variability, and altered agricultural conditions under a transforming climate could exceed farmers’ ability to adapt. 

Farming could easily become adversely affected by (i) extreme heat and escalating water demands; (ii) inflated frequency of severe weather events, such as drought and flood; (iii) sea level rise and flooding of coastal lands; and (iv) modification in crop nutrient content. Variability is also likely to occur in (v) the number and type of pathogens and pests affecting plants and livestock; (vi) altered use of pesticides; (vii) damage to fisheries and aquaculture; and (viii) mycotoxin contamination. 

There are numerous fine-scale processes that can moderate vegetation responses to nitrogen deposits. While smaller amount of nitrogen may act as fertilizer, stimulating growth in plants, large accumulated amounts can (ix) decrease soil health and cause a loss in the number of plant species. These vital food security issues need to be dealt with and modeled into future plans for livestock expansion. 

The reality is animal-based diets will become even less efficient and further wasteful as planetary heating intensifies. The FAO's 2006 and 2013 assessments do not fully factor in the effects of climate warming on plants and crops. In particular, as the land warms, drought may reduce tree productivity and survival across many forest ecosystems. If the vapor-pressure deficit continues to climb, forest drought-stress by the 2050s will exceed that of the most severe droughts in the past 1,000 years. 

The world's food authority uses different baseline scenarios for improved land management for livestock over a 20-year period. But they model weather data from 1987 – 2006. This climate assumption is challenged by recent weather-related (a) lower crop yields, (b) feed crop failures, and (c) livestock die-offs. Upwards of 60% of crop yield variability can be attributed to climate irregularity. And unnervingly, this variation occurs in regions that are principal producers of major crops, like the Midwestern US, the North China Plains, western Europe and Japan. 

Direct climate impacts to maize, soybean, wheat, and rice under a RCP 8.2 scenario could involve average losses of 400–2,600 calories, or 8 to 43% of the present-day total. Freshwater limitations in some heavily irrigated regions could necessitate reversion of 20–60 Mha (77k – 231k mi) of cropland from irrigated to rain-fed management, and a further loss of 600–2,900 Pcal. 

These projections are a major cause for concern. Many subtropical arid and semi-arid regions will probably experience less precipitation. In wet tropical regions, extreme precipitation events will be further intense and frequent. Monsoon onset dates will start earlier while withdrawal rates are going to be delayed, resulting in a lengthening of the season. Tropical cyclones are expected to become extra intense, with stronger winds and heavier rainfall. In addition, variability of climate, such as El Niño events, has large impacts on crop production. 

Africa will be the part of the world that is most vulnerable to climate variability and alteration. East Africa will experience further short rains, while west Africa will get heavier monsoons. Much higher temperatures could reduce the length of the growing period in some parts of Africa by up to 20%. 

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Unsavory Soil Management


Unsavory Soil Management: 
Why High-Density Grazing is an Unmitigated Climate and Social Disaster 
by Moses Seenarine 11/20/17

Many supporters of animal farming question the significance of land degradation and GHG pollution from livestock grazing. They often cite Allan Savory's claim that livestock's damaging effects on soil and the climate can be controlled through “holistic management and planned grazing.” Savory's process purportedly allows domesticated herds to act as “a proxy for former herds and predators”, in trampling dry grass and leaving “dung, urine and litter or mulch.” This supposedly enables the soil to “absorb and hold rain, to store carbon, and to break down methane.” 

Contrary to the scientific literature, Savory's popular theory to reverse desertification and return the atmosphere to preindustrial levels requires a massive enlargement in livestock production. Be that as it may, agricultural and environmental science suggests Savory's claim is simply not reasonable. For instance, the massive, ongoing additions of carbon into the atmosphere from human activity far exceed the carbon storage capacity of global grasslands. 

Savory’s ultra-high stock density (UHSD) methods have garnered little support from agricultural science, and there are many researchers critical of his unscientific methods. One accuses him of piecing together false assumptions to produce ineffective but popular recommendations on climate mitigation. 

Another scholar point to Savory’s numerous inconsistencies and varying methods. A review of experiments from 13 North American sites and additional data from Africa reveal there is little evidence for any of the environmental benefits which Savory claimed for his methods. Other researchers point out that intensive (cell) grazing is only viable where water points are close and labor is cheap. Temporary or permanent fencing is labor intensive, and moving herds daily requires more labor that most livestock operations cannot afford. 

Nonetheless, the livestock industry and popular trade magazines are touting the miracle of ultra-high stock density (UHSD) grazing for small-scale farmers. Farming at amounts exceeding 1 million pounds (463,600 kg) of live animal per acre is far beyond the capacity of the family farm. At this high level of stock density, cattle have to be moved multiple times per hour, per grazing period. There is no known "magical" stock density value that expedites the desired outcomes, but the greater the stock density the bigger the herd impact. Farmers need to have capable pen and corral space, sufficient drinking water and recharge capabilities, effective fencing with quality energizer to carry electricity to extremities of the property, plenty of temporary electric fence supplies, and suitable equipment to quickly deploy them. 

Due to herd impact, recovery periods are usually longer thus lengthening grazing cycles, especially in areas impacted during wet periods. Intrinsically, UHSD requires massive amounts of land and labor, and cannot be accomplished sustainability or by family farms. Emma Archer's review of 14 years of satellite imaging data in South Africa ascertained that Savory's intensive grazing practices caused lower levels of vegetation than traditional approaches, when rainfall is added. 

Rather than the desertification outcome of UHSD, there is massive potential for reforestation in Africa if livestock is removed and the related savanna burning is stopped. Even though Savory's methods have been repeatedly debunked for many decades, it is popularly promoted by the food animal industry, environmentalists and many others, to justify environmentally destructive carnivory. In reality, UHSD causes severe land degradation which may have been a major factor in wars in Darfur and Syria. Far from being a solution, enlarging livestock production is an unmitigated climate and social disaster.

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Yes but No! Doesn't Global Warming Help Plants?


Yes, but No! Doesn't Global Warming Help Plants?
by Moses Seenarine, 11/17/17

Global Warming deniers claim that natural negative feedback absorbs excess CO2. While this is true, this weathering process takes hundreds of thousands of years. In the ancient past, excess CO2 came mostly from volcanoes that released very little compared to what humans do now. The excess GHG was removed from the atmosphere through the weathering of mountains, which takes in CO2. 

Modern humans are releasing CO2 into the atmosphere 14,000 times faster than nature has over the past 600,000 years, far too quickly for natural negative feedbacks to respond. The system is now entirely out of equilibrium and it will take a long time to become balanced again. Oddly, despite evidence to the contrary, deniers argue that negative feedbacks dominate the climate. But the spiral in natural disasters and spread of extreme weather events suggests just the opposite, that amplifying positive feedbacks are dominating.

'Skeptics' maintain that warming is not necessarily bad and a small amount of warming is a good thing. On the contrary, one-degree warming is already causing a lot of problems, as the IPCC AR5 report on climate impacts documents. To boot, business-as-usual GHG outflows could bring forth a 3°C to 5°C (5.4 - 9°F) rise fairly quickly. 

Another common contrarian argument is that CO2 is not bad since it is necessary for life on Earth, and accounts for only 4 parts in 10,000 of the atmosphere. Carbon dioxide is not a dangerous gas, but it is a pollutant since too much causes climate shifts. The whole lifecycle of the gas has to be taken into account, not just the limited function it serves for plants. And it causes ocean acidification, which is another huge problem. 

Deniers assert that climate theory is contradictory and cannot be supported by both floods and droughts, or too much snow and too little snow. But these events are part of the natural process of climate adjustment. Moreover, these variations can be explained by climate science. 

Higher temperatures augment evaporation, exacerbating droughts and adding larger amounts of moisture to the air for stronger storms. And, the warming is happening to a greater extent at higher latitudes. This phenomenon reduces the temperature difference between higher and lower latitudes, which slows down storms and dumps extra precipitation in localized areas. Correspondingly, it causes greater snow and flooding in these areas, and less snow and drought outside of them. 

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Countering Climate Skeptics


Countering Climate 'Skeptics' - Why Ignoring Climate Reality is Delusional
by Moses Seenarine, 11/16/17

In the face of insurmountable evidence, climate 'skeptics' such as Roy Spencer maintain that the climate system is insensitive to humanity’s GHG releases. Global warming deniers assert that the earth is not heating up. One frequent claim is that the Earth has not warmed recently, which it clearly has. Deniers refer to surface temperatures, which is only 2% of where the warming is going, and they have still warmed 0.2°C (0.36°F) over the last 15 years. 

Another common tactic is to question whether alteration of the climate is natural, or as Spencer argues, “If we don't know how much of recent warming is natural, then how can we know how much is manmade?” There is little doubt remaining and climate science is almost unanimous on this point. The IPCC AR4 report clearly states, "Most of the observed increase in global average temperatures since the mid-20th century is very likely [90% confidence] due to the observed increase in greenhouse gas concentrations.” 

The report continues, "It is extremely likely [95% confidence] more than half of the observed increase in global average surface temperature from 1951 to 2010 was caused by the increase in greenhouse gas concentrations and other forcings together." Observational evidence shows that anthropogenic CO2 discharges are causing the climate to warm. Specifically, there is less heat escaping to space and larger amounts returning to Earth. Nights are warming faster than days, and winter is warming faster than summer. There is less oxygen in the air, and there are greater quantities of fossil fuel carbon in the air, trees, and coral. 

The Earth had about 0.6°C (1.08°F) average global surface warming over the past 60 years. During that time, the IPCC's best estimate is that GHGs have caused about 0.9°C (1.62°F) warming, which was partially offset by about 0.3°C (0.54°F) cooling from human aerosol pollution. 

Other natural external factors have had no net influence on global temperatures, in particular, solar activity has been flat since 1950. And since warm and cool ocean cycles cancel each other, internal variability has no long-term influence on average global temperatures. Equally, the urban heat island effect does not have a profound influence on the surface temperature record. Climate deniers falsely state that climate models are unreliable, and have failed in hindcast to explain the lack of a notable temperature rise over the last 30 plus years. The evidence is that global surface temperatures have climbed above 0.5°C (0.9°F) over the past 30 years, and this ascent is momentous. And, climate models have accurately reproduced this slope. 

It is the skeptics themselves who have done poorly, having universally predicted less warming than has been observed. McLean's prediction that 2011 would return to 1956-level temperatures sticks out in particular. And Akasofu predicted only a 0.5°C (0.9°F) rise between 2000 and 2100. Skeptics frequently question whether models can accurately predict future climate. Be that as it may, climatologists use observational and real world methods in their projections. 

One common reference climatologists use is warming from the enhanced greenhouse effect of a doubling of CO2, around 560 ppm, or the 'climate sensitivity' effect. Climate sensitivity incorporates feedbacks which can either amplify or dampen warming due to a doubling of CO2. This is salient because if sensitivity is low, as some climate skeptics argue, then the planet will warm slowly and humans will have extra time to adapt. On the other hand, if climate sensitivity is high, the Earth will warm more quickly and humans will have less time to respond and adjust. 

Observational evidence suggests that it is high. Paleoclimate data from ice cores and other sources across a range of geologic eras are very consistent, finding between 2°C and 4.5°C (3.6 – 8.1°F) global surface warming in response to doubled CO2. Climate models likewise reproduce these findings. However, climate projections have vastly underestimated the role that clouds play, and future warming could be far worse. A doubling of CO2 could result in a global temperature increase of up to 5.3°C (9.5°F) – far warmer than the 4.5°C older models predict. 

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

New Release

New Release - Cyborgs Versus the Earth Goddess

Now Available! Cyborgs Versus the Earth Goddess: Men's Domestication of Women and Animals and Female Resistance by m seen...

Popular