Showing posts with label agriculture. Show all posts
Showing posts with label agriculture. Show all posts

Mass Extinction

Pandemics Ahead: Number 7 in a series looking at the link between animal protein and global health disasters.

Excerpt from Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages. ISBN: 0692641157. http://amzn.to/2yn7XrC

Of all the species that have populated Earth at some time over the past 3.5 billion years, in excess of 95% have vanished, many of them in spectacular die-offs called mass extinctions. The permanent loss of large numbers of species over a relatively short period of geological time is known as a mass extinction. According to the fossil record, there have been five mass extinctions due to alterations in Earth's environment and atmosphere. Over half of all life on earth has been wiped out, repeatedly, during the past 500 million years. One cause is an oxygen-depleted ocean spewing poisonous gas as a result of planetary heating. 

The natural background extinction rate for mammals and birds is one species lost every 500 to 1,000 years.(869) Species extinction is occurring at 100 times the natural rate, and is expected to accelerate to between 1,000 and 10,000 times in the coming decades.(870) The current rate of extinction may already be as high as 10,000 times the natural rate.(871) At the upper annual rate of 0.7%, thousands of species are disappearing each year. If that trend continues, it could lead to a loss of 75% of species, or mass extinction, by 2200.

According to the UNEP, the Earth is in the midst of the sixth mass extinction of life. This is due to neoliberal development policies and practices, which are based on reductionist, short-sighted, utilitarian views of nature. About 150-200 species of plant, insect, bird and mammal become extinct every 24 hours. This is nearly 1,000 times the "natural" or "background" rate.

The current rate of biodiversity loss is greater than anything the world has experienced since the vanishing of the dinosaurs nearly 65 million years ago. And the losses are occurring all over the planet, from the South Pacific to the Arctic and from the deserts of Africa to mountaintops and valleys of the Himalayas.(872) Precious life is being loss in the oceans, land and air. Up to 50% of known vertebrate species died off in the last 50 years. And, the remaining 50% could die off in the next 40 years. Threatened with extinction are 33% of reef-building corals, fresh-water mollusks, sharks, and rays. Plus, 25% of plants and mammals, 20% of reptiles, and 14% of birds.(873)

Of 3,000 wild species tracked since 1970, the overall decline in wildlife populations was 52%.(874) Once populations drop below 50%, this may culminate in unstoppable, irreversible, cascading extinctions and collapse. Over 75% of species loss is a mass extinction, and the Earth is rapidly approaching this point. The IUCN survey of species threatened with extinction catalogs over 17,000 groups. The list contains one in four mammals, one in three amphibians, and one in eight birds. 

The number is actually 50% higher because the survival of 6,300 non-threatened species depends on the existence of the threatened species cataloged. These figures may be much larger since only an extremely small proportion of possible and known species has been evaluated for threatened status. For land extinctions, the spread of agriculture has been the main driver, while overfishing and pollution have affected sealife. Species across land, rivers and seas are being decimated as humans kill for food in unsustainable numbers and destroy habitats. The fastest decline among the animal populations was in freshwater ecosystems, where numbers have plummeted by 75% since 1970.

The biggest declines in animal numbers were in developing nations. Conservation efforts in rich nations have seen small improvements, but the big declines in wildlife in rich nations occurred long ago. Even so, biodiversity is still in decline in developed countries. Case in point, farmland birds in the UK, such as gray partridge, have declined by 50% between 1970 and 2012, mainly due to an intensification in farming. 

In effect, by importing food and other goods produced via habitat destruction in developing nations, rich nations are “outsourcing” wildlife loss to the global South. This represents yet another aspect of global neocolonialism. Over a third of all the products of deforestation, such as animal carcass and soy for livestock feed, were exported to the EU between 1990 and 2008. A 2°C (3.6°F) rise in warming may cause 15% to 40% of species becoming extinct.(875) If one species becomes extinct, this can have a chain-effect on others it interacts with. And, the extinction of a keystone species may cause a cascade of further extinctions. 

Around US$25 billion is needed annually to achieve effective global conservation.(876) Biodiversity-related aid has been falling, and in 2002, five agencies spent only US$1.5 billion on conserving biodiversity. The World Bank, Global Environment Facility, IUCN, Nature Conservancy, and Wildlife Conservation Society spent half of this aid in the US alone.

At COP21 in Paris, Germany, Norway and the UK pledged to support rainforest conservation efforts with about $1 billion per year through 2020. While this is a great start, a sum of $10 billion per year is needed to fully protect the 1.5 billion acres of tropical rainforest remaining. This commitment level from the developed world is a good start, given tropical forest's potential to lower global warming. Conversion to alternatives to fossil fuels is necessary but will cost trillions of dollars. Conservation requires just a fraction of that total.

Chapter 23: 6TH MASS EXTINCTION, pg 227 
  Previous  |  Home  |  Next 

For more information, see MeatClimateChange.org

Press News 062420

Our article, "Lucky Streaks Don't Last: Livestock Disease and Human Health" was posted on the American Sociological Association's Section on Animals Blog on June 8, 2020

https://www.asanet.org/asa-communities/sections/sites/animals-and-society/blog#luckysteaksdontlast 

Our "Regs to Nowhere" article was posted on the American Sociological Association's Section on Animals Blog on Covid-19 on June 8, 2020

https://www.asanet.org/asa-communities/sections/sites/animals-and-society/covid-19#regstonowhere 

Biodiversity and Livestock

Pandemics Ahead: Number 6 in a series looking at the link between animal protein and global health disasters.

Excerpt from Meat Climate Change: The 2nd Leading Cause of Global Warming by Moses Seenarine, (2016). Xpyr Press, 348 pages ISBN: 0692641157) http://amzn.to/2yn7XrC

Human carnivory is the single greatest threat to biodiversity.(863) Animal carcass and feedstock production are expanding quickly in biodiversity-rich developing countries. The sheer quantity of animals being raised for human consumption poses an enormous threat to the Earth's biodiversity. Livestock occupies up to 75% of all agricultural lands, 30% of Earth's land surface, and 20% of the total terrestrial animal biomass.(864)

The land area dedicated to producing domesticates was once habitat for wildlife. In 306 of the 825 terrestrial eco-regions, livestock is identified as "a current threat." And, 23 of Conservation International's 35 "global hotspots for biodiversity," characterized by serious levels of habitat loss, are affected by food animal production.(865) Much of the biodiversity loss due to agriculture is occurring in Latin America, Sub-Saharan Africa, and South and South-East Asia. 

Forests are either logged or burned to make room for grasslands, and often the area needed is extensive. Ruminant production can erode biodiversity through a dozen processes, namely (i) forest loss and degradation, (ii) land-use intensification, (iii) exotic plant invasions, (iv) soil erosion, (v) persecution of large predators, and (vi) competition with wildlife for resources. Deforestation can in turn create (vii) fragmentation, allowing only patches of habitat for species to live. If patches are distant and small, then (viii) gene flow is reduced and (ix) there will be a greater chance for invasive species to intrude. Fencing to convert an open range into ranches can (x) cut the migration routes of wild animals, and (xi) keep them away from waterholes. On top of this, (xii) fencing can trigger overgrazing by cattle. Also, hunting, fishing and other forms of exploitation are a major factor in declines in wildlife populations.(866)

The threat of extinction also affects food animals. Over 17% of the world's 8,774 agricultural breeds risk extinction. This is mostly due to the increasing worldwide use of non-native breeds and the neglect of breeds that are not “competitive” on the global market. Native food animals do not produce as much flesh, milk, eggs or other goods as the most popular commercial breeds.(867) There are a shocking 1,458 potential extinctions of all breeds of agricultural animals like cattle, goats, pigs, and chickens, due to disease, climate change, neglect, and inbreeding. Already 100 food animal breeds went extinct in this century.

Carbon footprints can serve as an approximate indicator of the environmental impact of domesticate production. One team comparing the carbon footprint (CF) and the volume of GHGs (greenhouse gas) emitted during the lifecycle of pig, chicken, and cow carcass production, discovered that how biodiversity is affected varies.(868) There can be contrasting effects from intensification. Higher intensities of production can allow larger areas to be left in its natural state. On the other hand, intensification involves greater use of pesticides, fertilizers, and monocropping locally, which threatens biodiversity around feed crops.

The CF of livestock acts as an indicator of acidification and eutrophication, as well. Improving the efficiency of nitrogen will lead to less eutrophying and acidifying substances being released into the environment, and to lower GHG pollution in N2O form. GHG mitigation strategies based on reduced livestock consumption likewise creates less acidification and eutrophication. Diminished GHG outflows due to lower food animal intake mean less land is required for feed production, so CF can act as a proxy for land use also. Although there are inconsistencies between CF of livestock and environmental impacts, CF can be used as part of the current momentum of carbon footprinting and pricing.

Chapter 23: 6TH MASS EXTINCTION, pg 226. Previous  |  Home  |  Next

For more information, see MeatClimateChange.org

Eating Responsibly: Meat Causes Food Insecurity



Eating Responsibly: Meat Causes Food Insecurity
by Moses Seenarine, 1/12/18

The modern practice of animal-based agribusiness has implications for food security, inequality, and human health. Humans produce enough calories in the world to feed everyone, even with an accretionary global population. Still and all, according to the UN, around one in eight people in the world is severely malnourished or lack access to food, due to poverty and high food prices. 

While 91% of farmers in the US have crop insurance to cover losses in the event of extreme weather, only 15% of farmers in India are covered. In China, only around 10% of farmers have crop insurance, and just 1% or less in Malawi and most low-income countries. Food security and food sustainability are on a collision course. Reversing direction to avoid this major counterpoint will require extreme downward shifts by large segments of the world's population in their intake of animal carcass, chicken eggs, cow's milk and seafood. 

Given current and future crop projections under a warmer climate, it is wasteful to use highly productive croplands to produce animal feed since this is conducive to exhausting the world's food supply. According to one study, “80 percent of the world’s starving children live in countries where food surpluses are fed to animal that are then killed and eaten by more well-off individuals in developed countries.” 

Similarly, an advocate for dietary change pointed out, “Intensive meat production isn’t just torture for animals. It destroys the environment, and devours great chunks of our raw materials which we import from the global South as animal feed.” This plant-based advocate continued, “Argentina and Brazil are dramatically increasing their soy cultivation, and it's being fed almost exclusively to the animals we slaughter, forcing up land prices. Small farmers are losing their land and livelihoods. That schnitzel on our plates jeopardizes the food security of many people in the global South.” 

Food waste is another mountainous issue since 30% to 50% of food is wasted worldwide. Waste negatively affects global food availability, especially in the US, China, and India. Reducing food waste in these three countries alone could yield food for upwards of 400 million people.

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine, [ http://amzn.to/2yn7XrC ]

Eating 'Rich': Class and Diet


Eating 'Rich': Class and Diet
by Moses Seenarine 1/10/18

Food security is a problem of distribution, not just production. Around 17% of densely populated India is undernourished, even though per capita flesh consumption is relatively low. In contrast, fewer than 5% of people in the US, where 22% of the world’s cattle is raised, are at risk of going hungry. 

Overall, the clear trend globally is for rising animal consumption among the urban middle class. Eating animal-based meals is a status symbol. Even with India's religious prohibitions and cultural politics against the eating of cow flesh, 'non-veg' has become a status symbol in the thriving cities. On top of this, across the world, people typically eat animals as part of a feast, holiday or celebration. School cafeterias serve animal carcass every day with few plant-based offerings, raising expectations for a daily dose of flesh. 

Even though plants are cheaper, a high-pressure, fast food lifestyle is causing adults to lose their taste for vegetables, and they are forgetting how to cook them. The economic gap between developed and developing countries is reflected in their animal consumption. While people in developed countries fulfill upwards of half, 56%, of their protein needs from animal sources, people in developing countries obtain only 18% in this way. 

Brazil, Russia, India, China and South Africa, the BRICS, are five big developing countries. Economic growth in the BRICS is reflected in their animal consumption, and together, they account for 40% of the world’s population. Between 2003 and 2012, BRICS animal consumption rose by 6.3% a year and is expected to rise by another 2.5% a year between 2013 and 2022. 

The upsurge in carnism is due to the expansion in poultry consumption worldwide. Cow carcass is the one category that on a worldwide level showed no gain in consumption levels from 1970-2000. This trend reflects the fact that while cattle consumption rose in developing countries such as China and Brazil, it fell modestly in North America, Oceania, and Europe. 

Chicken consumption in China and India is determined by lifestyle to a larger extent than by population growth. Similarly, in Russia, the world’s biggest cow carcass importer, demand depends on prosperity from oil and gas export revenues, since the population peaked in 1991 at around 150 million. While animal carcass is cheap in Brazil, it is expensive in South Africa. Several economic crises in South Africa have ensured that the rising demand for animal flesh is almost entirely limited to cheaper chicken carcass. 

Between 2005 and 2050, food demand may soar 60 to 100% higher than the FAO's estimate of 50% from 2005/2007 levels. There are many uncertainties, but food projections are more sensitive to socio-economic assumptions than to climate warming or bioenergy scenarios. With higher population and lower economic growth, food consumption per capita drops on average by 10% for crops and 20% for livestock. This shows that a consumption tax on food animals can greatly lower livestock intake and associated climate-altering gases.

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine, [ http://amzn.to/2yn7XrC ]

Colonizer Diet: Feed and Displacement


Colonizer Diet: Feed and Displacement 
by Moses Seenarine 1/10/18

Land used to grow a billion tons of livestock feed is cultivated as monoculture over vast areas. Monoculture is the agricultural practice of producing or growing a single crop or plant species over a wide area for consecutive years. In many regions feed crops are grown in mass monocultures and exported worldwide. 

The animal feed business is booming and spreading out rapidly. By way of illustration, in Argentina, soy crops ballooned from 4 million hectares (15k sq mi) in 1988, to 9 million (35k sq mi) in 2000, to 19 million hectares (73k sq mi) in 2012. This is close to a five-fold boost in a little over two decades. Correspondingly, soy production in Argentina went from 10 million tons in 1988, to 20 million in 2000, to 52 million tons in 2012. 

In 2012, soy represented 22% of Argentinian exports, compared to cow carcass and chicken at 3%. Around 25% of the world's soybean exports are from Argentina. Soy production alone is projected to boom by 5 million hectares (19k sq mi) by 2020, to 27 million hectares (104k sq mi) – the area of New Zealand. By 2020, cattle production is likewise predicted to enlarge by 25%. 

Even so, cattle-ranching is already responsible for about half of Brazil’s GHG pollution, involving large amounts of methane, due to the vast numbers of cattle. Feed crop monoculture has caused the displacement of millions of families, and thousands of communities across the global South. 

Multitudes of small-scale farmers have been priced off their land or forced to sell to bigger producers, losing homes and livelihood. Indigenous communities, whose traditional land rights are rarely recognized or respected, are particularly affected. They are powerless to stop the collusion of state, local elites and TFCs usurping their lands and ways of life with the spread of ranching and feed crops. 

There are around 1.5 million small farmers in Paraguay, yet 70% of the land is owned by just 2% of landowners. This extreme form of inequality is fueled by livestock production. Deplorably, the majority of the rural Paraguayan population, largely indigenous, no longer own land and live in extreme poverty. Only 15% of this population has access to safe drinking water and 42% to medical care. Similarly, small farms represent 78% of all farms in Peru but occupy a mere 6% of the country’s agricultural lands. 

Throughout the globe, livestock is a major cause of rising inequality and landlessness. The growing demand for land in South America, Asia and elsewhere is leading to conflicts across many feed-growing regions, with widespread reports of violent attacks on rural communities. Families and whole communities have been forcibly evicted from their homes. Some have had their houses burned, often in the middle of the night. In collusion with livestock and feed producers, the Paraguayan police and security forces have been accused of operating death squads. 

Across the world, the spread of feed plantations has reduced the number of small farms, the tradition source of food for rural communities. Production of corn, rice, oats, and beans has diminished substantially. The upshot has been an escalation in food insecurity. For example, from 1996 and 2003, the amount of people in Argentina lacking a 'basic nutrition basket' rose from 3.7 to 8.7 million. 

Soy farms can cover up to 50,000 hectares (193 sq miles). Large-scale soy production is highly mechanized and profitable. The planting and harvesting are carried out by machines, which means that few people are employed. A mechanized farm has an average of one employee per 200 hectares (500 acres or 0.7 sq mi). Rural unemployment has soared as large farms need little labor. Consequently, rural laborers migrate to cities to look for work, exacerbating urban poverty and unemployment. Basic survival needs fuel a migration crisis and compel displaced Latin American farmers to search of work in the US, Canada and elsewhere. 

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine, [ http://amzn.to/2yn7XrC ]

Is Neo-Imperialism on Your Plate? Meat, Feed and Neocolonialism


Is Neo-Imperialism on Your Plate? Meat, Feed and Neocolonialism
by Moses Seenarine, 1/10/18

Most of the 1.3 billion tons of grain consumed by livestock annually are fed to farm animals - primarily pigs and chickens - in Europe, North America, China and Latin America. Current grain prices make this profitable, but this could reverse if grain prices climb in the future. 

Due to expanding livestock production, world cereal feed demand will be significantly higher in the coming 30 years. The surge upwards in cereal feed demand greatly exceeds other factors in importance that are generally expected to affect the future world food situation, like GMOs and climate vicissitudes, in the coming three decades. 

Grain grown in the developing world and exported to the developed world is a form of neocolonialism. This is the geopolitical practice of using capitalism, business globalization, and cultural imperialism to influence a country, in lieu of either direct military control or indirect political control. Neocolonialism frequently involves imperialist or hegemonic colonialism, and the disproportionate economic influence of modern capitalist businesses in the economy of a developing country. 

Many multinational corporations (MNCs) continue to exploit the natural resources of former European colonies through collusion with local elites. Such economic control is inherently neocolonial. It is similar to the imperial and hegemonic varieties of colonialism practiced by the US and the empires of UK, France, and other European countries, from the 16th to the 20th centuries. Most of the world's feed crops are grown in the underdeveloped world and almost all of it is grown to be exported. This is very similar to sugar, coffee, tobacco, and other export crops grown during enslavement and colonial periods. 

After China, Europe is the biggest importer of soy. Europe is one of the largest importers of Brazilian soy, the leading importer of ethanol, and in the top four importers of cow carcass from Brazil. European imports of soy, cow carcass and ethanol are main drivers of deforestation and climate-altering gases, with destructive social impacts in Brazil and globally. Soy production in Latin America has more than doubled in 15 years. 

This rapid expansion in feed production has been facilitated by multilateral banks, like the International Financial Corporation (IFC), which is the private sector lending arm of the World Bank (WB), and the Inter-American Development Bank (IADB). Multilateral banks are keen to encourage agriculture for export and are very successful at doing so. Case in point, around 80% of Paraguay’s soy is exported to feed livestock. 

Corporations involved in the soy trade are key drivers of expansion and intensive production. US companies Bunge and Cargill dominate the soy industry in Brazil and Argentina. They buy beans from farmers, own crushing mills, and export soymeal and oil to the UK and the rest of Europe. Cargill, the world’s largest commodity trader, owns crushing mills for soy and rape seed in the UK. Archer Daniel Midland (ADM), Dreyfus, and Brazilian company André Maggi, are major stakeholders in Brazilian soy production as well. Trading companies, like Cargill and Bunge, have a crucial role in controlling the whole soy production process, because farmers depend on them to provide credit and supplies of fertilizer and pesticides. On top of that, these TFCs manage the logistics, arranging storage, transportation and processing of the grain.

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine, [ http://amzn.to/2yn7XrC ]

Peak Yield? Climate and Crop Productivity


Peak Yield? Climate and Crop Productivity
by Moses Seenarine, 12/19/17

Since the 1960s, feed crops' yield growth have jumped remarkably, but this rise is part of an ongoing process over the past 10,000 years. In pre-historic times, it took 3,000 acres (12 sq km) of land to feed one human forager, but now it takes 1/3 of an acre (1,300 sq m) to feed one person. So the amount of food grown per acre (43,500 sq ft) has multiplied by a factor of 10,000 in 10,000 years. 

Global grain yields now average about 3.5 tons per hectare (2.5 acre). In the US, yields are double at seven tons per hectare. That difference in yield primarily reflects more access to capital and energy by US farmers and TFCs who can afford vast quantities of fertilizer, mechanized farm equipment, irrigation systems, pesticides, and other tools that dramatically boost agricultural yields, at least in the short-term. 

An analysis of the effects of 2,800 weather disasters in 177 countries on 16 cereals from 1964 to 2007 show that climate change may have already begun to take a toll on agriculture. Drought and extreme heat in the last 50 years have reduced cereal production by up to 10%. And, the impact of these weather disasters was greatest in the developed nations of North America, Europe, Asia and Australia. Production levels in the global North dropped by 20% because of droughts, double the global average. 

Crops and methods of farming are uniform across immense areas, so if a drought occurs in a way that is damaging to those crops, they all suffer. In agriculture, crop yield or agricultural output, refers to both the measure of the yield of a crop per unit area of land cultivation, and the seed generation of the plant itself. For instance, if three grains are harvested for each grain seeded, the resulting yield is 1:3. The figure, 1:3 is considered by agronomists as the minimum required to sustain human life. 

Ominously, grain yields are already stagnant and have stopped rising in many parts of the world. On a global scale, stagnating yield is affecting four major grain types that produce two-thirds of the world's calories - maize, rice, wheat and soybeans. Yields of these four crops are growing by only 0.9 to 1.6% a year. Yields in 25% to 33% of the crop producing areas are stagnating, like those in Australia, Argentina, Guatemala, Morocco, Kenya, and the US states of Arkansas and Texas. In parts of the UK, in areas that produced the highest outputs 20 years ago, yields have actually dropped. 

Just nine or 10 plants species principally feed the world. An international research team ascertained that 16 of the 21 foods they inspected reached peak production between 1988 and 2008. Menacingly, this synchronization of peak years in upwards of three-quarters of edible plants suggests the whole food system is becoming overwhelmed. Maize reached its peak rate in 1985, followed by rice three years later, in 1988. Vegetables reached their peak rate in 2000, while wheat reached its peak rate in 2004, followed by sugarcane in 2007. Soybean reached its peak rate in 2009. As an outcome of peak food, larger production means greater amounts of land under cultivation.

Since GM crops were planted, the US staple crop system has performed worse than non-GM crops in Europe - in yields, pesticide use, genetic diversity and resilience. For the US system, there is a dangerous downward yield trend in recent years. Stagnating yields may be due to the soil damage caused by the use of heavy machinery and a long-term decline in organic matter content in soils. The upshot is additional fertilizers have to be used to boost yields. 

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Hothouse Earth: Plants and Climate Change


Hothouse Earth: Plants and Climate Change
by Moses Seenarine, 12/19/17

Raising carbon dioxide levels are not necessarily good for agriculture. The benefits of CO2 for plants may be less than previously thought and potentially counteracted by the damaging effects of the proliferation of surface ozone. Agriculture has always faced the challenge of weather variability, and altered agricultural conditions under a transforming climate could exceed farmers’ ability to adapt. 

Farming could easily become adversely affected by (i) extreme heat and escalating water demands; (ii) inflated frequency of severe weather events, such as drought and flood; (iii) sea level rise and flooding of coastal lands; and (iv) modification in crop nutrient content. Variability is also likely to occur in (v) the number and type of pathogens and pests affecting plants and livestock; (vi) altered use of pesticides; (vii) damage to fisheries and aquaculture; and (viii) mycotoxin contamination. 

There are numerous fine-scale processes that can moderate vegetation responses to nitrogen deposits. While smaller amount of nitrogen may act as fertilizer, stimulating growth in plants, large accumulated amounts can (ix) decrease soil health and cause a loss in the number of plant species. These vital food security issues need to be dealt with and modeled into future plans for livestock expansion. 

The reality is animal-based diets will become even less efficient and further wasteful as planetary heating intensifies. The FAO's 2006 and 2013 assessments do not fully factor in the effects of climate warming on plants and crops. In particular, as the land warms, drought may reduce tree productivity and survival across many forest ecosystems. If the vapor-pressure deficit continues to climb, forest drought-stress by the 2050s will exceed that of the most severe droughts in the past 1,000 years. 

The world's food authority uses different baseline scenarios for improved land management for livestock over a 20-year period. But they model weather data from 1987 – 2006. This climate assumption is challenged by recent weather-related (a) lower crop yields, (b) feed crop failures, and (c) livestock die-offs. Upwards of 60% of crop yield variability can be attributed to climate irregularity. And unnervingly, this variation occurs in regions that are principal producers of major crops, like the Midwestern US, the North China Plains, western Europe and Japan. 

Direct climate impacts to maize, soybean, wheat, and rice under a RCP 8.2 scenario could involve average losses of 400–2,600 calories, or 8 to 43% of the present-day total. Freshwater limitations in some heavily irrigated regions could necessitate reversion of 20–60 Mha (77k – 231k mi) of cropland from irrigated to rain-fed management, and a further loss of 600–2,900 Pcal. 

These projections are a major cause for concern. Many subtropical arid and semi-arid regions will probably experience less precipitation. In wet tropical regions, extreme precipitation events will be further intense and frequent. Monsoon onset dates will start earlier while withdrawal rates are going to be delayed, resulting in a lengthening of the season. Tropical cyclones are expected to become extra intense, with stronger winds and heavier rainfall. In addition, variability of climate, such as El Niño events, has large impacts on crop production. 

Africa will be the part of the world that is most vulnerable to climate variability and alteration. East Africa will experience further short rains, while west Africa will get heavier monsoons. Much higher temperatures could reduce the length of the growing period in some parts of Africa by up to 20%. 

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Who Should We Feed - Animals or People?


Who Should We Feed - Animals or People?
by Moses Seenarine, 12/19/17

Worldwide, two billion people live primarily on an animal-based diet, while double that sum, or 4 billion people, live primarily on a plant-based diet. In fact, the  United Nations Environment Programme (UNEP) estimated that calories lost from feeding cereals to animals could feed an extra 3.5 billion people. 

Another report calculated that 4 billion people could be fed with the crops devoted to livestock. The single biggest intervention to free up calories would be to stop using grains for cow carcass production in the US. By far, the US, China, and Western Europe account for the bulk of the 'diet gap,' and corn is the main crop being diverted to animal feed. 

By moderating diets from food animals, choosing less resource-demanding animal products, and maintaining non-feed systems, around 1.3 and 3.6 billion more people could fed. And ending consumer waste of animal calories could feed an additional 235 million people. The WHO estimated that the number of people fed in a year per hectare (2.5 acres) ranged from 22 individuals for potatoes and 19 for rice, to one and two persons, respectively for cow and sheep carcass. The agency added that the low energy conversion ratio from feed to carcass is a concern since the cereal grain being produced is diverted to livestock. 

A Bangladeshi family living off rice, beans, vegetables and fruit may live on an acre of land or less. In sharp contrast, the average American, who consumes around 270 pounds of animal carcass a year, needs 20 times that. The current global average animal consumption is 100g (3.5 oz) per person per day, with about a ten-fold variation between high-consuming and low-consuming populations. 

For most people in developing countries who obtain their protein from plants, eating animal flesh is a luxury. A kilogram (2.2 lb) of animal carcass can cost from $2 to $5 in the local markets, which is several days’ wages. A typical African eats only 20 kg (44 lb) of animal flesh a year, well below the world average. These findings suggest that over-consumption and dietary habits are of the essence for understanding resource use and GHG pollution, as opposed to expanding population being the primary driver as is popularly argued. 

That is, population's importance is related to lifestyle expenditures, and specifically to the over-consumption class. A 2011 report concludes, “The mass consumption of animals is a primary reason why humans are hungry, fat, or sick and is a leading cause of the depletion and pollution of waterways, the degradation and deforestation of the land, the extinction of species, and the warming of the planet."

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Cows and Sand


Cows and Sand: Effects of Livestock Overgrazing  
by Moses Seenarine 12/15/17

Worldwide, livestock overgrazing practices are substantially reducing many grasslands' performance as carbon sinks. Overgrazing occurs on 33% of all range-land, and often, marginal range-lands are used intensively when historically productive adjacent range has become overgrazed and unproductive. The cycle of overgrazing, soil degradation, topsoil erosion and loss of vegetation is rapidly expanding on all continents. 

The chief ecological impacts of overgrazing are (i) the loss of biodiversity, (ii) irreversible loss of topsoil, (iii) strengthening of turbidity in surface waters, and (iv) greater flooding frequency and intensity. Overgrazing of pastureland leads to a decrease in long-term grazing productivity. In Botswana, for example, farmers' common practice of overstocking cattle to cope with drought losses made ecosystems further vulnerable and risked long-term damage to herds by depleting scarce biomass. 

Globally, 70% of all grazing land in dry areas is considered degraded, mostly because of overgrazing, compaction and erosion attributable to livestock activity. Worldwide, overgrazing can be considered the major cause of desertification in arid dry-lands, tropical grasslands, and savannas. On top of that, in arid and semi-arid dry-lands around the globe, overgrazing is the major cause of desertification. 

Placement of high densities of livestock on a grassland removes biomass at a rapid rate, which produces a series of accompanying effects. For instance, (i) the residual plants decline in mass density, and (ii) surface water infiltration is reduced. Then (iii) there is a dwindling away of fungal biomass that relies on grasses. Ground surface temperatures rise, which exaggerates the amount of (iv) evaporation and (v) transpiration, and this leads to (vi) a build up in aridity. In addition, overgrazing has a characteristic effect of (vii) reducing root depths. With impeded water uptake from the soil, a positive feedback loop of growth retardation is established. 

At least 25% of the world's biodiversity lives underground where the earthworm is a giant alongside tiny organisms such as bacteria and fungi. These organisms act as the primary agents driving nutrient cycling, and they help plants by improving nutrient intake, which in turn supports above-ground biodiversity. 

Removing livestock, and better soil and land management that supports healthy soil organisms can boost the soil's ability to absorb carbon and mitigate desertification. This could result in greater quantities of carbon being sequestered, thus helping to offset agriculture's own emissions of GHGs. A four-year survey of the northern China plains concluded that by reducing grazing pressure to half can deliver improved ecosystem services like lower GHGs and improved grassland composition. Early summer rest maintained the best grassland composition. 

In the US, removing livestock from public lands would reduce CH4 discharges, with attendant benefits for climate mitigation. This climate action would also mirror federal nutrition policy, particularly the recommendation to eat less cow flesh. Much of the degraded environmental conditions on public lands and waters caused by grazing farm animals would end. This would enable improvement or even recovery of vulnerable areas. And, undertaking this policy shift makes fiscal sense by saving taxpayer dollars.

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Unsavory Soil Management


Unsavory Soil Management: 
Why High-Density Grazing is an Unmitigated Climate and Social Disaster 
by Moses Seenarine 11/20/17

Many supporters of animal farming question the significance of land degradation and GHG pollution from livestock grazing. They often cite Allan Savory's claim that livestock's damaging effects on soil and the climate can be controlled through “holistic management and planned grazing.” Savory's process purportedly allows domesticated herds to act as “a proxy for former herds and predators”, in trampling dry grass and leaving “dung, urine and litter or mulch.” This supposedly enables the soil to “absorb and hold rain, to store carbon, and to break down methane.” 

Contrary to the scientific literature, Savory's popular theory to reverse desertification and return the atmosphere to preindustrial levels requires a massive enlargement in livestock production. Be that as it may, agricultural and environmental science suggests Savory's claim is simply not reasonable. For instance, the massive, ongoing additions of carbon into the atmosphere from human activity far exceed the carbon storage capacity of global grasslands. 

Savory’s ultra-high stock density (UHSD) methods have garnered little support from agricultural science, and there are many researchers critical of his unscientific methods. One accuses him of piecing together false assumptions to produce ineffective but popular recommendations on climate mitigation. 

Another scholar point to Savory’s numerous inconsistencies and varying methods. A review of experiments from 13 North American sites and additional data from Africa reveal there is little evidence for any of the environmental benefits which Savory claimed for his methods. Other researchers point out that intensive (cell) grazing is only viable where water points are close and labor is cheap. Temporary or permanent fencing is labor intensive, and moving herds daily requires more labor that most livestock operations cannot afford. 

Nonetheless, the livestock industry and popular trade magazines are touting the miracle of ultra-high stock density (UHSD) grazing for small-scale farmers. Farming at amounts exceeding 1 million pounds (463,600 kg) of live animal per acre is far beyond the capacity of the family farm. At this high level of stock density, cattle have to be moved multiple times per hour, per grazing period. There is no known "magical" stock density value that expedites the desired outcomes, but the greater the stock density the bigger the herd impact. Farmers need to have capable pen and corral space, sufficient drinking water and recharge capabilities, effective fencing with quality energizer to carry electricity to extremities of the property, plenty of temporary electric fence supplies, and suitable equipment to quickly deploy them. 

Due to herd impact, recovery periods are usually longer thus lengthening grazing cycles, especially in areas impacted during wet periods. Intrinsically, UHSD requires massive amounts of land and labor, and cannot be accomplished sustainability or by family farms. Emma Archer's review of 14 years of satellite imaging data in South Africa ascertained that Savory's intensive grazing practices caused lower levels of vegetation than traditional approaches, when rainfall is added. 

Rather than the desertification outcome of UHSD, there is massive potential for reforestation in Africa if livestock is removed and the related savanna burning is stopped. Even though Savory's methods have been repeatedly debunked for many decades, it is popularly promoted by the food animal industry, environmentalists and many others, to justify environmentally destructive carnivory. In reality, UHSD causes severe land degradation which may have been a major factor in wars in Darfur and Syria. Far from being a solution, enlarging livestock production is an unmitigated climate and social disaster.

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Yes but No! Doesn't Global Warming Help Plants?


Yes, but No! Doesn't Global Warming Help Plants?
by Moses Seenarine, 11/17/17

Global Warming deniers claim that natural negative feedback absorbs excess CO2. While this is true, this weathering process takes hundreds of thousands of years. In the ancient past, excess CO2 came mostly from volcanoes that released very little compared to what humans do now. The excess GHG was removed from the atmosphere through the weathering of mountains, which takes in CO2. 

Modern humans are releasing CO2 into the atmosphere 14,000 times faster than nature has over the past 600,000 years, far too quickly for natural negative feedbacks to respond. The system is now entirely out of equilibrium and it will take a long time to become balanced again. Oddly, despite evidence to the contrary, deniers argue that negative feedbacks dominate the climate. But the spiral in natural disasters and spread of extreme weather events suggests just the opposite, that amplifying positive feedbacks are dominating.

'Skeptics' maintain that warming is not necessarily bad and a small amount of warming is a good thing. On the contrary, one-degree warming is already causing a lot of problems, as the IPCC AR5 report on climate impacts documents. To boot, business-as-usual GHG outflows could bring forth a 3°C to 5°C (5.4 - 9°F) rise fairly quickly. 

Another common contrarian argument is that CO2 is not bad since it is necessary for life on Earth, and accounts for only 4 parts in 10,000 of the atmosphere. Carbon dioxide is not a dangerous gas, but it is a pollutant since too much causes climate shifts. The whole lifecycle of the gas has to be taken into account, not just the limited function it serves for plants. And it causes ocean acidification, which is another huge problem. 

Deniers assert that climate theory is contradictory and cannot be supported by both floods and droughts, or too much snow and too little snow. But these events are part of the natural process of climate adjustment. Moreover, these variations can be explained by climate science. 

Higher temperatures augment evaporation, exacerbating droughts and adding larger amounts of moisture to the air for stronger storms. And, the warming is happening to a greater extent at higher latitudes. This phenomenon reduces the temperature difference between higher and lower latitudes, which slows down storms and dumps extra precipitation in localized areas. Correspondingly, it causes greater snow and flooding in these areas, and less snow and drought outside of them. 

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

New Release

New Release - Cyborgs Versus the Earth Goddess

Now Available! Cyborgs Versus the Earth Goddess: Men's Domestication of Women and Animals and Female Resistance by m seen...

Popular